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9.1 Diffie-Hellman

a)

b)

Let g € (Z,; ®) be the generator, which Alice and Bob use as the basis. Alice chooses
x4 at random from {0,...,n — 1} and sends y4 = R,(g - x4). Analogously, Bob
chooses zp at random from {0,...,n—1} and sends yp = R, (g -xp). The established
shared key is kap = Ry (g - x4 - xB).

As shown in Example 5.27, we have gcd(g,n) = 1. Therefore, Eve can use the Ex-
tended GCD algorithm to efficiently find an a € Z such that a - g =, 1. Then she can
compute k4p using the eavesdropped messages y4 and yp as kap = Ry(a-ya - yp).
This is because

kap=ng-za-zp=ng-za-(a-g)-xp=na-(9-24) (9 2B) =na-ya-ys

Let us make Bob’s argument more explicit: The Diffie-Hellman protocol using a cyclic
group G = (g) is insecure if the discrete logarithm problem in G is easy. Since by
Theorem 5.7 there exists an isomorphism ¢ : G — Z,, one can compute x such that
g* = h by instead computing x such that ¢(g)* = ¢(h). Since this can be done
efficiently (both ¢(g) and ¢(h) are in Z,,), Bob concludes that the discrete logarithm
problem is easy in all cyclic groups.

Bob’s argument is incorrect, because the above procedure is efficient only if the iso-
morphism ¢ can be efficiently computed, which is not always the case. For example,
computing the isomorphism given in the proof of Theorem 5.7 requires solving the
discrete logarithm problem in G (so Bob’s procedure would give no advantage).

9.2 The Group Z,

a)

b)

The order of the group (Z%4; ®) is ¢(36). By Lemma 5.12,
0(36)=(2—1)-221.(3-1)-3*1=2.2.3=12.

Z3s consists of all numbers in Zsg which are relatively prime with 36, that is, Z3; =
{1,5,7,11,13,17,19, 23, 25, 29, 31, 35}.

We will verify for each a € Zj,; whether it is a generator (but more efficiently than by
computing (a)). An a € Zj, is a generator if and only if ord(a) = 10. By Lagrange’s
Theorem, ord(a) € {1,2,5,10}, so a is a generator if and only if ord(a) ¢ {1, 2,5}, that
is, if and only if a # 1, a®> # 1 and a® # 1. We can now compute Rj;(a?) and Ri;(a®)
forall a € {2,...,10}. The generators are 2,6, 7 and 8.



Note. Another way to solve this exercise for any (Z,,; ®) is to first use Theorem 5.15 to determine
whether (Zy,; ®) is cyclic. If so, it is isomorphic to (Z(m); ®). Now we find one generator g of Zy, (by
trying all possibilities) and prove that for any i € Z, ), ¢' is a generator if and only if ged(i, p(m)) = 1
(see Example 5.27).

o) We prove that f : Z},,,, — Z;, x Z},, defined by f(z) = (R, (z), Rmn(x)) is an isomor-
phism. Throughout the proof we will use the fact that gcd(R,,,(x), m) = ged(z, m) for
any x, m, which follows from Lemma 4.2.

f is a function. We show that f(z) € Z} x Z, forall z € Z7, ..
Let x € Z7,,, which means that gcd(xz,nm) = 1. Let d = ged(z,n). Then, d | =

and d | n, which implies that d | z and d | nm, so by the definition of gcd,
d | ged(x,nm). Hence, d | 1, so d = 1. Therefore, gcd(R,(x),n) = ged(z,n) =1,
so R, (x) € Z.

The proof that R,,(z) € Z}, is analogous.

f is surjective. Take any (a,b) € Z} x Z,. Since gcd(m,n) = 1, by CRT, there exists

an & € Zpy, such that (R,(z), Ry (z)) = (a,b). To show that x € Z7,,, assume
towards a contradiction that d = gcd(xz,nm) > 1. Let p be an arbitrary prime
in the decomposition of d. Since p | mn, by Lemma 4.7, p | n or p | m. In the
first case, since also p | x, we get p | ged(z, n). But ged(z,n) = ged(Ry(x),n) =
ged(a,n) = 1 (because a € Z}), so this is a contradiction. Analogously, in the
second case we get p | gcd(b, m).

f is injective. By CRT, the x defined above is unique in Z,,,, hence, it is also unique
inZ;,..

f is a homomorphism. For any a,b € Z;, ,

9.3 An RSA Attack

First, consider the case when n;, ny and n3 are not relatively prime. Without loss of gen-
erality, assume that gcd(ni,n2) > 1. We can now use the Extended GCD algorithm to
compute p = ged(ng,n2) and this way efficiently factorize n;. This allows us to compute
the secret key of Alice and decrypt c;.

!The operation x on Z}, x Z, is defined as (a1, b1) * (a2, b2) := (a1 On a2, b1 Om ba).



Secondly, assume that 11, no and n3 are relatively prime. Consider the following system of
congruence equations:

¢ (mod nyp)

ca  (mod ng)

x=c3 (mod n3)

Let N = ninong. Using the Chinese Remainder Theorem, we can efficiently find the solu-
tion xg to the above system of equations, such that 0 < zp < N.

Notice now that m? is also a solution to the system of equations, because ¢; = m? (mod n;)

fori € {1,2,3}. Moreover, since 0 < m < n; fori € {1,2,3}, wehave 0 < m? < ny-ng-n3 =
N. Since by the Chinese Remainder Theorem z is unique in {0, ..., N — 1}, it follows that
xo = m>.

What is left is to compute the cube root of z( over Z, which can be done efficiently.

Note. This attack is also possible for e > 3. However, for given e one needs e ciphertexts, each encrypted for a
different recipient.

9.4 Elementary Properties of Rings

a) We have
(—a)b +ab disgib. (—CL + Cl,)b def. igverse 0b Lemma:5.17(i) 0.
Therefore, (—a)b is the additive inverse of ab, which means that (—a)b = —ab.
b) We have

(—a)(=b) + (—(ab)) 2 (—a)(=b) + (—a)b =™ (—a)(=b +b)

def. inverse Lemma 5.17 (i)
= ( — a) 0 =

0.

Therefore, (—a)(—b) is the additive inverse of —(ab), which means that (—a)(—b) =
—(—(ab)) = ab.

9.5 More Elementary Properties of Rings

a) In a previous version of this exercise the assumption that R is an integral domain
was missing. However, the statement is false for general rings. To see this consider
the ring (Zg; @3, 0, ®g, 1). Consider the elements a = 2,0 = 4 € Zg, and let n = 3 and
m = 5.

Clearly, we have gcd(3,5) = 1. Also, we have

22 =8=40
20 =32=40
3 B (1)
4% =64 =50

4° =1024 =4 0



however 2 #5 4.

Assuming that R is an integral domain, the statement is true. First observe that if
either m or n is 1 the statement is trivial. Therefore we can assume that m,n > 1. By
Corollary 4.5 there exist integers = and y such that 1 = maz +ny. Observe that x and y
have opposite signs. We know z # 0, because otherwise ny = 1 which means n = 1.
Similarly we get y # 0. Therefore, if x > 0, then ma > 1 which in turn implies that
1 —mx = ny < 0, and because n is positive then y is negative. Assume without loss
of generality that z > 0. In this case we can write 1 = mz — n(—y) or equivalently

1+ n(-y) = ma.

From this we get
a-(a")V =gty

— lern(*y) (2)
=b- (b)Y
=b-(a")Y
Because R is an integral domain, from the equality
@ (@) = b (@)
we conclude that a = b by Lemma 5.20.
If y < 0 the proof is identical writing 1 + m(—z) = ny.
b) The statement is true. Let z = (1 — ab)~!. We have
(1—-ba)(1+bzxa)=1—ba+ (1 —ba)bza  (Distributivity)
=1—ba + bxa — babza  (Distributivity)
=1—ba+ b(xa — abzra) (Distributivity) 3)
=1—"ba+b((1 —ab)xa) (Distributivity)
=(1—-ba)+ba=1 (1 —ab)xr =1and — ba + ba = 0).
Similarly,
(14 bza)(1l —ba) =1+ bra — ba — bxraba (Distributivity)
=1—ba+ bxa — braba (Distributivity)
) 4)
)

=1—ba+bx(1l—ab)a
=(1—-ba)+ba=1

(
(

=1—ba + (bx — bxab)a (Distributivity
(Distributivity
(z(1 —ab) =1and — ba + ba = 0).

9.6 Properties of Commutative Rings

a) From a|b it follows that 3d b = ad and, thus, bc = (ad)c = a(dc). Hence, a|bc.

b) From alb it follows that 3d b = ad and from alc it follows that Je ¢ = ae. By the
distributive law, we have b + ¢ = ad + ae = a(d + e). Hence, a|(b + ¢).



9.7 Ideals in Rings

a)

b)

)

d)

We have 0 = z0 € (z). Let a,b € (z). Than a = zk; and b = zks for ki, ks € 7Z, so
that a + b = x(k; + k2) € (z). This shows that () is an additive subgroup of R. Let
a € () and z € Z. We have az = (zk)z = z(kz) € (z) for some k € Z. This shows
that (x) is closed under multiplication by elements of Z.

Let I be an ideal of Z. If I = {0} then I = (0). Let d be the smallest positive element
of I. Suppose d # 1. Let x € I. We can write z = ¢d + r with 0 < |r| < d. We can also
rewrite this as r = x — ¢d, and since both x and ¢d are elements of I, then » € I. We
can assume 7 > 0 (otherwise, —r € I is positive). But then r is positive and smaller
than d which means r = 0 by assumption on d. This shows I = (d).

Firstofall 0 = 0z+0y € (z,y). Also, if a,b € (x,y) then a = zki+yl1 and b = xko+yls
for some ki, k2, 01,02 € R. Therefore a +b = x(k1 + k2) + b(¢1 + l2) € (x,y). This
shows that (z,y) is an additive subgroup of R. Let a € (z,y) and r € R. Then
ar = (xk + yl) = x(kr) + y(lr) € (x,y). This shows that (x,y) is closed under
multiplication by elements of R.

Suppose that there exists p(z) € Z[z] such that (p(z)) = (2, ). If degp(z) > 1, then
the product of degp(z)f(x) > 1forall 0 # f € Z[z], so that 2 ¢ (p(z)). Suppose
then that degp(x) = 0. Since p(z) € I, then p(x) = 2k for some k € Z. But then
p(x)f(z) <= (2k)(f(z)) = x. If a is the coefficient of the first degree term of
f(z), we would have (2k)a = 2(ka) = 1, but 2 does not have an inverse in Z. This
concludes the proof.

The proof of subtask b) does not go through here because we cannot perform division
with remainder in Z[z].
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