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Diskrete Mathematik

Solution 8

8.1 Algebras

a) (Z;x) is neither a group nor a monoid, because * is not associative. The counterex-
ample is the following:

2x(0%x0)=2%0=4#16=4%x0=(2%0)*0

b) (P(X);U) is a commutative monoid but not a group.

Associativity and commutativity of U follow directly from Theorem 3.4. The neutral
element is &, because (1) AUZ = JUA = Aforall Aand (2) @ € P(X),since o C X
for any X.

To prove that it is not a group, we give a counterexample to G3. Since X # &, there
exists an © € X. Therefore, {x} € P(X). Assume for contradiction that there exists
an inverse element of {x}, that is, assume that there exists an A € P(X) such that
{z} UA = @. Butsince x € {z} U 4, this is a contradiction.

o) Itis a group. zZWe prove the three properties separately.

* G1 (associativity). Let (a,b), (c,d), (e, f) € S be arbitrary. We have

((a,b) x (c,d)) * (e, f) = (ac,ad + b) * (e, f)
= (ace,acf 4+ ad +b).

Moreover, we have

(a,b) = ((c,d) x (e, f)) = (a,b) * (ce,cf + d)
= (ace,a(cf +d) +b)
= (ace,acf 4+ ad + b).

e G2 (neutral element). The neutral element is e = (1,0). This is because for any
(a,b) € S we have

(a,b) xe=(a,b) * (1,0) =(a-1,a-0+b) = (a,b)
and

ex(a,b) =(1,0)* (a,b) =(1-a,1-b+0) = (a,b).



* G3 (inverse). Let (a,b) € S be arbitrary. Using that a # 0, let (z,y) =

Observe that
1 —b
(a,b) * (@) = (@, b) * (5. =)
1 —b
=(a-—,a
a a
= (170)
=e.

Thus, (z,y) € S is a right inverse of (a,b). As shown in the lecture notes (see

Section 5.2.4), this implies that (x, y) is also a left in

8.2 Facts About Groups

a a *

e*ag’(a*a)* = (a*a)g’a*e

(as proved in the lecture notes, this implies that (b* @) *

G1

*(/b\*a) = q %

(axDb)

(b*(b*a)) (L. ((b*g)*a) S

verse of (a, b).

G2
= a

b) We have to show that b * a is the right inverse of a * b, that is, that (a * b) *

(axb) =e).

a*(e*a)ga*a

¢) For any a,b,c € G, we have

axb=a%c =% ax(axb)=ax*(axc)

G1

= (a*xa)xb=(axa)=*

G3
= exb=exc

G2
b=c

I

8.3 Group Structure induced by Bijections

C

(Definition of )
(Deflrutlon of )
(ftof=idg)
(G1 for G)
(f~hof=ide)
(Deflnltlon of )
(

Definition of x )

a) We have to show that e is also a left neutral element. For any a € G, we have

(b Q)

~G3

a) We prove that associativity axiom G1 is satisfied (for (S, x)). Let z,y, z, € S.

(&

= e



b) Now, we prove that the neutral element axiom G2’ is satisfied (for (S, )). Letx € S.

zxfle)=f(f (@)« f'(f(e) (Definition of«)
= f(fH(z) xe) (f'of=idg)
= f(f (=) (G2 for G)
—z (fof'=idy)

Finally, we prove that the inverse axiom G3’ is satisfied (for (S, )). Letx € S.

rxT=x*f (ffl(\x)> (Definition of ™)
= (@ (1 (7'@)))  (Definition of )
=7 (@) @) (/7 o f = idg)
= f(e) (G3 for G)

From the lecture notes and Task 8.2 we know that axioms G1, G2’, and G3’ imply G2
and G3.

¢) We prove that f is a group homomorphism. Let a,b € G.

flaxb)=f(f(f(a)) * ) (/o f=idg)
FUTHS@) = fH0) (F7h o f =ide)
fla) % f(b) (Definition of )

Since f is bijective by assumption, then f is a group isomorphism.

d) Let Abe a non-empty countable set. By Theorem 3.17 we know that either A is finite,
or A ~ N. We treat these two cases separately.

- (Ais finite) Then there is a finite M C N and a bijectiong : M — A. Letk = |M]|.
Since N is well-ordered, we can order the elements of M as

mp <mo < ...Mkg.

Now, consider the function h : Z;, — M defined as i — m;. This map is easily
verified to be a bijection, so that g o h is a bijection from Zj to A. The claim
follows from subtask a), by observing that (Zj, &) is a group.

- (A ~ N) Then there exists a bijection g : N — A. Since Z is countable, there exists
a bijection h : Z — N. Therefore, the composition g o h is a bijection Z — A, and
the claim follows from subtask a), by observing that (Z, +) is a group.

8.4 Structure of Groups

a) There are 6 subgroups:

{(0,0)}, {0,2} X {0}, Z4 X {0}, {0} X Z5, {0,2} X Z5, Z4 X Z5



b)

)

You are not required to formally justify why these are all subgroups.

Take arbitrary a,b € G. Sinceaxa = eand b*b = e, we havea = @, b = b and

- — Lemmab37 ~
axb=ax*xb. Hence,axb=a*b = bxa=2>bxa.

By definition (Definition 5.16) we have
<Z>{57 ®15> = <{17 2,4,7,8,11,13, 14}a ®15>7

<Z>{67 ®16> = <{17 37 57 77 97 117 137 15}7 ®16>-

Direct computation shows that we can express the elements of the groups as follows:
Z1s Zig

=20015110 1 =390 7°
=21015110 3 =310 7°
=22015110 9 =320 7°
=22015110 11 =330 7°
11=2001511" 7 =320 7"
7 =21o15111 5 =310 7!
14=2201511" 15=320157"
13=23015 111 13 =33 @14 7!

(1)

0 = N =

Now, we define a map

*

o : Zi5 — Lng,
2% O15 11° — 3% ®16 7b.
We show that ¢ is a group homomorphism. Let z,y € Z75. From the table above, we

know that z = 2°®1511°and y = 2°®1511% for some a,c € {0,1,2,3} and b,d € {0, 1}.
We have

plxO15Yy) =¢ ((2“ O15 11b) 15 <QC O15 11d)>

= (2“+° O15 11b+d) (Commutativity of ®)
= 39F¢ @4 70Hd (Definition of )
= (3‘1 ©16 7b) ©16 (36 ©16 7d) (Commutativity of ®)
= ¢(x) ©16 ¢(y) (Definition of ¢).

Since ¢ is clearly bijective, it is an isomorphism.

8.5 Inner Direct Products

a) Consider the map

p:Hx K — G,

(h, k) —> h* k. @)



First, we prove that ¢ is a group homomorphism. Let (hi,k1) € H x K and let
(ha, ko) € H x K. We have

©((h1,k1)(ho, k2)) = @((h1 * ho, k1 x ko)) (Definition of direct product)

(
= (hy * hg) * (k1 * k2)  (Definition of ¢)
= (h1 x k1) * (ha x k2)  (Associativity of * and Commutativity of G)
©((h1,k1)) * ©((h2,k2)) (Definition of ¢).
(3)
Next, we prove that ¢ is injective. Let (h1,k1) € H x K and let (ho, k2) € H x K.

Then

(p((hl,kl)) = (p((hg, kz)) <:> h1 * kl = hg * kQ

@hl*kl*é\g:hg

Definition of )
kg*lgz\g:eandhg*e:hg)
a*hlzeande*(kl*k;):kl*kfg)
kyixky € K hi*hy € Hand HNK = {e})

<:>k1*]€2:a*h2

(

(

(
= kixko=e=hyxhy (
= ky = ko and hy = ho

<> (h1,k1) = (ha, k2).
(4)
Finally, we prove that ¢ is surjective. Let g € G. Because G = {hxk | h € H, k € K}
then there exist h € H and k € K such that g = h * k. This means that ¢((h, k)) = g.

b) Observe that Z;; is a commutative group. Consider the subgroups {1, 2, 4,8} of Zj;
and the subgroup {1,11}. It is clear that they are subgroups as 2* = 16 =15 1 and
11-11 = 121 =5 1. Observe that {1,2,4,8} N {1,11} = {1}. Furthermore, for all
elements of Zj; \ {1,2,4,8,11} wehave 7 = 11«2 mod 15,14 = 11 %4 mod 15 and
13 = 11 * 8 mod 15, which shows that every element of Z7; can be written as the
product of elements in these two subgroups. By the previous subtask, this implies
that Z7; is isomorphic to the direct product {1, 2,4,8} x {1,11}. Now, the subgroup
{1,2,4,8} is a cyclic group of order 4 generated by 2, and therefore it is isomorphic
to Z4 via the isomorphism (prove it!) 2 — 1 € Z4, and the subgroup {1,11} is a
cyclic group of order 2 generated by 11, and therefore it is isomorphic to Z; via the
isomorphism (prove it!) 11 — 1 € Zs. The claim follows immediately from the fact
that the composition of isomorphisms is an isomorphism (again, prove it).

8.6 A Binary Operation From a Group Homomorphism

First, observe that for any x,y, 2 € G we have:

x-(y-z) =) «(y-2) (def. -)
= P(z) * P(Y(y) x P(2)) (def. -)
= (z) * (Y((y) * ¥(¥(2))) (Y homomorphism)



Moreover, we have
(x-y) z=9( y)xP(2)
= P(x) *P(y)) * P (2)
(VW (2)) *¥((y))) * ¥ (2)

We prove each direction (= and <) of the claim separately.

(def. -)
(def. -)

(1 homomorphism)

* —>: Assume that - is associative. Let € G be arbitrary. We have

(above
(L5.5 (i)
(L5.5 (i)

~— ~— ~— ~— ~—

(above

(1 idemp.

z-(e-e) =)= (((e)) * ¥(¥(e)))
= 1(x) * (¥(e) * Y(e))
— (a) * (e * <)
=1(z)*e
= ()
Analogously, we have
(z-€)-e= WW(x)) = (¥(e))) *P(e)
= ((P(x)) x Y(e)) xe
= (Y((x)) x€) xe
=((x)) *e
=P (Y(z))
Since - is associative, we must have
x-(ee)=(x-e)-e
Hence, ¢ (z) = ¢ (¢(x)).
* : Assume that ¢ is idempotent. Then, we have for any z,y, z € G:
z-(y-2) = w(x) * (P(Y(y)) * P (¥(2)))
P(x) * (V(¥(y) * ¥(2))
Y((x)) * (Y ((y)) * ¥ (2))
( (p(x)) * (P(y))) * ¥(z)

=(z-y)-2

8.7 Isomorphisms Map Generators to Generators
Take an arbitrary h € H and let a = ~*
Since g is a generator, there exists an m € Z such that a = ¢g".

e If m = 0, then by Lemma 5.5 (i), h = 1(g"
the neutral elements of G and H, respectively.

o If m > 0, then h = (g™) = ¢(g)™

) =1(e) = € =1(9)",

(G

(above

)
)
(1 idemp.)
1)
)

(h) (the inverse of ¢ exists, because 1 is bijective).

where e and €’ are

, where the last step is trivial for m = 1 and

otherwise follows from applying the definition of a homomorphism m — 1 times.

o Ifm <0, thenh = ¥(g™) = ¥((9)™)

= @)™ = (¥(g))™ = v(g)™

, where the third

step is justified as above, and the fourth step follows from Lemma 5.5 (ii).



8.8 Rotations of a Cube

a)

b)

(4]

d)

First of all, one has to decide which corner of the sofa coincides with the corner of
the room. For this, there are 8 possibilities. Once this corner is set, there are 3 edges
coming out of this corner (one of them going up) and, hence, 3 possibilities to place
the sofa. Once the corner and the edge going up are fixed, the position of the sofa is
fully defined. Hence, there are 3 - 8 = 24 possibilities overall.

Let us first determine |R|. Assume that the sofa stands in the corner in a certain (ar-
bitrary) position. After a rotation b, it may end up in one of the 24 possible positions
(this follows from Subtask a) ). Therefore, we can distinguish 24 different rotations
and |R| = 24.

It is possible to describe each element of R as a rotation around single axis. To see
this, consider all possible different rotations of a cube around an axis:

¢ Identity.

* Rotation around the centers of two opposite faces. There are 3 pairs of opposite
faces and for each pair there are 3 possible rotations: by 90, 180 and 270 degrees.
Together, this gives 9 rotations.

* Rotation around two opposite vertices. There are 4 pairs of opposite vertices and
for each pair there are 2 possible rotations: by 120 and 240 degrees. Together,
this gives 8 rotations

* Rotation around the centers of two opposite edges. There are 6 pairs of oppo-
site edges and for each pair there is only one possible rotation: by 180 degrees.
Together, this gives 6 rotations.

One can see (for example by drawing the cube after each rotation) that no two of the
above rotations end up with the cube being in the same position. Since together we
described 24 rotations and |R| = 24, each element of R corresponds to exactly one
rotation.

(R;0) is a group. Since function composition is associative, o is associative as well
(this is because every rotation corresponds to a permutation of vertices). The neutral
element is the identity. Furthermore, every element has an inverse, namely a rotation
around the same axis by 360 degrees minus the original angle.

The operation o is not commutative. Figure [1]illustrates that there exist rotations,
which do not commute.
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