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7.1 The Greatest Common Divisor

Let a, b, u, v ∈ Z \ {0} be such that ua + vb = 1 and let d = gcd(a, b). By the definition of
gcd, we have d | a and d | b. That is, there exist k, l ∈ Z such that a = kd and b = ld.
Hence, 1 = ua+ vb = ukd+ vld = (uk + vl)d. Thus, d | 1.
Since 1 is the only positive divisor of 1, it follows that d = 1.

7.2 Geometric Interpretation of the Greatest Common Divisor

Remark: a proof that assumes the steps in the footnotes without proof would still be con-
sidered valid in an exam situation.

Consider the line in the Cartesian plane through (0, 0) and (a, b) which has equation

y =
b

a
x.

Let d = gcd(a, b). By definition, gcd(a, b) | a and gcd(a, b) | b, so that we can write a = d · k1
and b = d · k2 for some k1, k2 ∈ Z. Since a, b are positive and d is positive, then k1 and k2
must be positive. Therefore. we get

y =
b

a
x ⇐⇒ y =

k2
k1

x.

Observe that gcd(k1, k2) = 1.1 Assume that (x, y) is an integer solution to the equation.
This means that k1 · y = k2 · x, or that in other words k1 | x · k2. Since gcd(k1, k2) = 1, this
implies k1 | x.2 We are only interested in points lying in the segment with endpoints (0, 0)
and (a, b), so that necessarily 0 ≤ x ≤ a = k1 · d. There are exactly d + 1 multiples of k1
between 0 and k1 · d, namely

{0, k1, 2 · k1, . . . , d · k1}.

This shows that there are at most gcd(a, b)+1 integer solutions to the equation above. How-
ever, clearly we can plug each of these values for x in the equation to find a corresponding
point on the segment with integer coordinates. This proves the claim.

1Indeed, assume that this is not true, and let 1 < e = gcd(k1, k2). By definition, gcd(k1, k2) | k2 and
gcd(k1, k2) | k2, so that we can write k1 = e · k3 and k2 = e · k4 for some k3, k3 ∈ Z. We have a = k1 · d =
(k3 · e) ·d = k3 ·d2 and a = k1 ·d = (k4 · e) ·d = k4 ·d2. Therefore, e ·d | a and e ·d | b, which means that e ·d | d
by definition of gcd. However, since e > 1 we have e · d > d, a contradiction. This proves gcd(k1, k2) = 1.

2This is easily seen by considering the prime factorizations of k1, k2, x, and k2 ·x. Indeed, by the uniqueness
of the factorization each prime factor of k1 must be a factor of either k2 or x. It cannot be a factor of k2 because
this would contradict gcd(k1, k2) = 1, and therefore it must be a factor of x.



7.3 Properties of Greatest Common Divisors and Least Common Multiples

a) The claim is false. As a counterexample consider a = 2, b = 3. Then gcd(a, b) = 1.
By the definition of ideals we have (a) := {u · a | u ∈ Z}, (b) := {u · b | b ∈ Z},
and (gcd(a, b)) := {u · gcd(a, b) | u ∈ Z}. With our choice of a, b this gives (a) = 2Z,
(b) = 3Z, and (gcd(a, b)) = Z. In particular, we have 1 ∈ (gcd(a, b)). Towards a
contradiction, assume 1 ∈ (a) ∪ (b). Then there must exist u ∈ Z such that either
1 = u · 2 or 1 = u · 3. In particular, this implies that either 2 or 3 must divide 1, which
is false.

b) The claim is true. Let a, b ∈ Z be arbitrary. For any x ∈ Z the following holds:

x ∈ (a) ∩ (b)
·⇐⇒ ∃n,m ∈ Z such that x = n · a = m · b
·⇐⇒ a | x ∧ b | x
·⇐⇒ lcm(a, b) | x [justification: definition of lcm and transitivity of | ]
·⇐⇒ ∃u ∈ Z such that x = u · lcm(a, b)
·⇐⇒ x ∈ (lcm(a, b))

This proves (a) ∩ (b) = (lcm(a, b))

7.4 Congruences

a) Take arbitrary m,n ∈ N. By Lemma 4.14 we have

123m − 33n ≡10 3
m − 3n.

Assume without loss of generality that m ≤ n. If m ≡4 n, then there exists a k ∈ N,
such that n−m = 4k and by Lemma 4.14, we have:

3m − 3n ≡10 3
m(1− 3n−m) ≡10 3

m(1− 34k) ≡10 3
m(1− 92k)

≡10 3
m(1− (−1)2k) ≡10 3

m(1− 1k) ≡10 3
m · 0 ≡10 0.

b) Take any a, b, c, d,m ∈ Z, such that m > 0. Assume that a ≡m b and c ≡m d. Then,
there exist s, t ∈ Z such that a− b = ms and c− d = mt. It follows that

ac = (ms+ b)(mt+ d) = m2st+msd+mtb+ bd = m(mst+ sd+ tb) + bd.

Therefore, m | ac− bd, so ac ≡m bd.

c) Consider all possible remainders R11(n
5 + 7) and R11(m

2) when m,n ∈ Z. By Corol-
lary 4.17, we have R11(n

5 + 7) = R11((R11(n))
5 + 7) and R11(m

2) = R11((R11(m))2).
By trying all ten possibilities for R11(n) and, respectively, for R11(m), we get that
R11(n

5 + 7) ∈ {6, 7, 8} and R11(m
2) ∈ {0, 1, 3, 4, 5, 9}. Since these sets are disjoint,

n5 + 7 cannot be equal to m2.



7.5 Modular Arithmetic

a) Take any even n ≥ 0 and let k ∈ N be such that n = 2k. By Corollary 4.17, we have
R7(13

n+6) = R7(R7(13)
n+6) = R7(R7(−1)n+6) = R7((−1)n+6) = R7((−1)2k+6) =

R7(7) = 0. Hence, 7 | 13n + 6.

b) Let a, e,m, n ∈ N \ {0} and assume that Rm(ae) = 1. By Theorem 4.1, there exists a
q ∈ N, such that n = qe+Re(n). Therefore,

Rm(an) = Rm

(
aqe+Re(n)

)
= Rm

(
(ae)q · aRe(n)

)
= Rm

(
(Rm (ae))q ·Rm

(
aRe(n)

))
(Corollary 4.17)

= Rm

(
1q ·Rm

(
aRe(n)

))
(Rm(ae) = 1)

= Rm

(
Rm(1)q ·Rm

(
aRe(n)

))
= Rm

(
aRe(n)

)
. (Corollary 4.17)

c) We first compute 2023 ≡12 2023 − 1800 ≡12 223 ≡12 223 − 180 ≡12 43 ≡12 7. By
Subtask b), R13(2

2023) = R13(2
R12(2023)) = R13(2

7). Now we have 27 ≡13 128 ≡13 11.

7.6 Multiplicative Inverses

a) The inverse of a is Rm(u), because a ·Rm(u) ≡m au ≡m 1− vm ≡m 1.

b) We first compute gcd(142, 553), using Lemma 4.2. Notice that dividing 553 by 142,
we get

553 = 3 · 142 + 127. (1)

Hence, by Lemma 4.2 (setting m = 142 and n = 553), we have gcd(142, 553) =
gcd(142, 127). We then repeat this trick:

142 = 127 + 15 (2)
127 = 8 · 15 + 7 (3)
15 = 2 · 7 + 1 (4)

Therefore, gcd(142, 553) = gcd(142, 127) = gcd(127, 15) = gcd(15, 7) = gcd(7, 1) = 1.
We now notice that rearranging Equations (1) to (4) allows us to find u and v such
that 1 = 142u+ 553v as follows:

1
(4)
= 15− 2 · 7
(3)
= 15− 2 · (127− 8 · 15) = (−2) · 127 + 17 · 15
(2)
= (−2) · 127 + 17 · (142− 127) = 17 · 142− 19 · 127
(1)
= 17 · 142− 19 · (553− 3 · 142) = 74 · 142− 19 · 553



Therefore, the multiplicative inverse of 142 modulo 553 is R553(74) = 74.

Note: The above method can be generalized to efficiently compute, for any given a and b, values u and
v, such that gcd(a, b) = ua+ vb. The resulting algorithm is called the extended Euclid’s gcd-algorithm.
Moreover, since an integer a has the multiplicative inverse modulo m if and only if gcd(a,m) = 1, this
algorithm allows to efficiently compute the multiplicative inverse of any number (or conclude that the
inverse does not exist).

7.7 Solution of a Congruence Equation

Take any a, b,m ∈ Z, such that m > 0.

ax ≡m b for some x ∈ Z
·⇐⇒ ax− b = km for some x, k ∈ Z (def. ≡m)
·⇐⇒ ax+ (−k)m = b for some x, k ∈ Z
·⇐⇒ b ∈ (a,m) (def. of the ideal)
·⇐⇒ b ∈ (d), where d = gcd(a,m) (Lemmas 4.3 and 4.4)
·⇐⇒ b = u · gcd(a,m) for some u ∈ Z (def. of the ideal)
·⇐⇒ gcd(a,m) | b

7.8 The Chinese Remainder Theorem

a) =⇒: Assume that a ≡nm b. This means that there exists a k ∈ Z such that a − b =
k(nm). Therefore, a− b = (km)n and, thus, a ≡n b. Analogously, we get a ≡m b.
⇐=: Assume that a ≡n b ∧ a ≡m b. Now consider the system of congruence equations
x ≡n Rn(b) ∧ x ≡m Rm(b). By Lemma 4.16, we have a ≡n b ∧ a ≡m b ⇐⇒ a ≡n

Rn(b) ∧ a ≡m Rm(b). Hence, by the assumption, x = a is a solution to the system of
congruence equations. Analogously, x = b is also a valid solution.
Since gcd(n,m) = 1, it follows from the Chinese Remainder Theorem that all solu-
tions for x are congruent modulo nm. Therefore, we must have a ≡nm b.

b) Since m and n are not relatively prime, we cannot apply directly the Chinese Remain-
der Theorem. Therefore, we will transform the system of congruence equations.
By subtask a), the following system of congruence equations is equivalent:

x ≡a y1 (1)
x ≡b y1 (2)
x ≡a y2 (3)
x ≡c y2 (4)

If y1 ̸≡a y2, there are clearly no solutions. Otherwise, the equations (1) and (3) are
equivalent and we can remove (3). By Lemma 4.16, we get the following equivalent
system of congruence equations:



x ≡a Ra(y1)

x ≡b Rb(y1)

x ≡c Rc(y2)

Since a, b, c are pairwise relatively prime, the Chinese Remainder Theorem guaran-
tees that there exists a unique solution x0 such that 0 ≤ x0 < abc. All remaining
solutions must be of the form x0 + k(abc) for k ∈ N. Since nm = a2bc, there exist
exactly a solutions x such that 0 ≤ x < nm.
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