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Solution 7

7.1 The Greatest Common Divisor

Let a,b,u,v € Z \ {0} be such that ua + vb = 1 and let d = gcd(a,b). By the definition of
ged, we have d | a and d | b. That is, there exist &, € Z such that a = kd and b = [d.

Hence, 1 = ua + vb = ukd + vld = (uk + vl)d. Thus, d | 1.
Since 1 is the only positive divisor of 1, it follows that d = 1.

7.2 Geometric Interpretation of the Greatest Common Divisor

Remark: a proof that assumes the steps in the footnotes without proof would still be con-
sidered valid in an exam situation.

Consider the line in the Cartesian plane through (0,0) and (a, b) which has equation

b
Y= —x.
a
Let d = gcd(a, b). By definition, ged(a, b) | @ and ged(a, b) | b, so that we can write a = d - ky
and b = d - ko for some ki, ko € Z. Since a, b are positive and d is positive, then k; and ko
must be positive. Therefore. we get
b ko
Yy=-r < Y= -—=.
a k‘l
Observe that ged(kq, k2) = IEI Assume that (z,y) is an integer solution to the equation.
This means that k; - y = kg - x, or that in other words k; | x - ky. Since ged(k1, k2) = 1, this
implies k1 | iL'EI We are only interested in points lying in the segment with endpoints (0, 0)
and (a,b), so that necessarily 0 < « < a = k; - d. There are exactly d + 1 multiples of k;
between 0 and k; - d, namely
{0,k1,2 - k1,...,d-ki}.

This shows that there are at most gcd(a, b) +1 integer solutions to the equation above. How-
ever, clearly we can plug each of these values for x in the equation to find a corresponding
point on the segment with integer coordinates. This proves the claim.

'Indeed, assume that this is not true, and let 1 < e = ged(k1,k2). By definition, ged(k1, k2) | k2 and
ged(ky, k2) | ko, so that we can write k1 = e - ks and k2 = e - k4 for some ks, k3 € Z. Wehavea = ki - d =
(ks-e)-d=ks-d>anda = ki-d = (ks-€)-d = ks -d*. Therefore, e-d | aand e-d | b, which means thate-d | d
by definition of gcd. However, since e > 1 we have e - d > d, a contradiction. This proves gcd(k1, k2) = 1.

This is easily seen by considering the prime factorizations of k1, k2, x, and k2 - =. Indeed, by the uniqueness
of the factorization each prime factor of k1 must be a factor of either k2 or x. It cannot be a factor of k2 because
this would contradict ged(k1, k2) = 1, and therefore it must be a factor of x.



7.3 Properties of Greatest Common Divisors and Least Common Multiples

a) The claim is false. As a counterexample consider a = 2, b = 3. Then gcd(a,b) = 1.
By the definition of ideals we have (a) := {u-a | u € Z}, (b) :={u-b | b € Z},
and (ged(a, b)) := {u - ged(a,b) | uw € Z}. With our choice of a, b this gives (a) = 2Z,
(b) = 3Z, and (gcd(a,b)) = Z. In particular, we have 1 € (gcd(a,b)). Towards a
contradiction, assume 1 € (a) U (b). Then there must exist v € Z such that either
1 =wu-2o0r1=u-3. In particular, this implies that either 2 or 3 must divide 1, which
is false.

b) The claim is true. Let a, b € Z be arbitrary. For any = € Z the following holds:

z€(a)N(b) < In,m e Zsuchthatx =n-a=m-b
< alxz ANb|zx
< lem(a,b) | [justification: definition of lem and transitivity of | ]
<= Ju € Zsuch that z = u - lem(a, b)

<= z € (lem(a, b))

This proves (a) N (b) = (Iem(a, b))

7.4 Congruences

a) Take arbitrary m,n € N. By Lemma 4.14 we have
123™ — 33" =19 3™ — 3™,

Assume without loss of generality that m < n. If m =4 n, then there existsa k € N,
such that n — m = 4k and by Lemma 4.14, we have:
3m _ gn =19 Sm(l . Snfm) =10 3m(1 _ 34k) =10 3m(1 . 92k)
=10 3771(1 — (—1)2k) =10 3m(1 — 1k) =10 3m -0 =10 0.

b) Take any a,b,c,d,m € Z, such that m > 0. Assume that a =,, b and ¢ =,,, d. Then,
there exist s,t € Z such that a — b = ms and ¢ — d = mt. It follows that

ac = (ms + b)(mt + d) = m?st + msd + mtb + bd = m(mst + sd + tb) + bd.

Therefore, m | ac — bd, so ac =, bd.

¢) Consider all possible remainders Ry1(n® + 7) and Ry1(m?) when m, n € Z. By Corol-
lary 4.17, we have Ry1(n® + 7) = Ri1((R11(n))® + 7) and Ry1(m?) = Ri1((R11(m))?).
By trying all ten possibilities for R;;(n) and, respectively, for Ri;(m), we get that
Ri1(n® +7) € {6,7,8} and Ry1(m?) € {0,1,3,4,5,9}. Since these sets are disjoint,
n® + 7 cannot be equal to m?.



7.5

Modular Arithmetic

a) Take any even n > 0 and let £ € N be such that n = 2k. By Corollary 4.17, we have

R7(13"+6) = R7(R7(13)"+6) = Ry(R7(—=1)"+6) = R7((=1)"+6) = R7((—1)*"+6) =
R7(7) = 0. Hence, 7 | 13" + 6.

b) Let a,e,m,n € N\ {0} and assume that R,,(a®) = 1. By Theorem 4.1, there exists a

q € N, such that n = ge + R.(n). Therefore,

Ry (a™) = Ry, (aqe-i-Re("))
~ R, ((ae)q aRAn))
= Ry, ((Rm (@)? - Ry (aRe(">)) (Corollary 4.17)
= Ry, (1q R (aReW)) (R (a®) = 1)
~ Ry, (Rm(1)q R, (aRe(”)))
~ R, (aRe<n>> . (Corollary 4.17)

c) We first compute 2023 =12 2023 — 1800 =2 223 =12 223 — 180 =12 43 =12 7. By

Subtask b), R;3(22023) = Ry5(2F12(2023)) = R15(27). Now we have 27 =3 128 =3 11.

7.6 Multiplicative Inverses

a) The inverse of a is R,,(u), because a - Ry, (u) =, au =5, 1 —vm =, 1.

b) We first compute ged(142,553), using Lemma 4.2. Notice that dividing 553 by 142,

we get
5953 = 3 - 142 +127. (1)

Hence, by Lemma 4.2 (setting m = 142 and n = 553), we have gcd(142,553) =
ged(142,127). We then repeat this trick:

142 = 127 + 15 (2)
127=8-15+7 ©)
15=2-7+1 (4)

Therefore, gcd(142,553) = ged(142,127) = ged(127,15) = ged(15,7) = ged(7,1) = 1.
We now notice that rearranging Equations (1) to (4) allows us to find v and v such
that 1 = 142u + 553w as follows:

1@15—2-7

15 _2.(127-8-15) = (-2) - 127 + 17 - 15

@ (—=2)- 127+ 17- (142 — 127) = 17 - 142 — 19 - 127

(:1)17-142—19-(553—3-142):74-142—19-553



Therefore, the multiplicative inverse of 142 modulo 553 is Rs53(74) = 74.

Note: The above method can be generalized to efficiently compute, for any given a and b, values u and
v, such that ged(a, b) = ua + vb. The resulting algorithm is called the extended Euclid’s gcd-algorithm.
Moreover, since an integer a has the multiplicative inverse modulo m if and only if ged(a, m) = 1, this
algorithm allows to efficiently compute the multiplicative inverse of any number (or conclude that the

inverse does not exist).

7.7 Solution of a Congruence Equation

Take any a, b, m € Z, such that m > 0.

ar =, bforsomex € Z
<= azx — b= km forsome z,k € Z (def. =,,)

<= ax + (—k)m = b for some z,k € Z

<= be (a,m) (def. of the ideal)
<= b € (d), where d = ged(a, m) (Lemmas 4.3 and 4.4)
<= b =u-ged(a,m) for some u € Z (def. of the ideal)

<= ged(a,m) | b

7.8 The Chinese Remainder Theorem

a)

b)

=—: Assume that a =,,,,, b. This means that there exists a k € Z such thata — b =
k(nm). Therefore, a — b = (km)n and, thus, a =,, b. Analogously, we get a =, b.
<=: Assume thata =, b A a =, b. Now consider the system of congruence equations
r =p Ry(b) N x =5, Rp(b). By Lemma 4.16, wehavea =, b A a =, b <= a =,
R,(b) N a =y, Ry (b). Hence, by the assumption, z = a is a solution to the system of
congruence equations. Analogously, z = b is also a valid solution.

Since ged(n, m) = 1, it follows from the Chinese Remainder Theorem that all solu-
tions for x are congruent modulo nm. Therefore, we must have a =, b.

Since m and n are not relatively prime, we cannot apply directly the Chinese Remain-
der Theorem. Therefore, we will transform the system of congruence equations.

By subtask a), the following system of congruence equations is equivalent:

T =4 Y1 1)
T =y (2)
T =q Y2 3)
T =c Y2 4)

If y1 #, yo2, there are clearly no solutions. Otherwise, the equations (1) and (3) are
equivalent and we can remove (3). By Lemma 4.16, we get the following equivalent
system of congruence equations:



T =q Ra(yl)
x =p Ry(y1)
T = Rc(yQ)

Since a, b, ¢ are pairwise relatively prime, the Chinese Remainder Theorem guaran-
tees that there exists a unique solution z( such that 0 < x5 < abc. All remaining
solutions must be of the form zg + k(abc) for k € IN. Since nm = a?bc, there exist
exactly a solutions x such that 0 < z < nm.



	The Greatest Common Divisor
	Geometric Interpretation of the Greatest Common Divisor
	Properties of Greatest Common Divisors and Least Common Multiples
	Congruences
	Modular Arithmetic
	Multiplicative Inverses
	Solution of a Congruence Equation
	The Chinese Remainder Theorem

