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Diskrete Mathematik

Solution 6

6.1 Partial Order Relations

a) i) 11 and 12 are incomparable, since 11 f12 and 12 J 11.
ii) 4 and 6 are incomparable, since 4 /6 and 6 [ 4.
iii) 5 and 15 are comparable, since 5 | 15.
iv) 42 and 42 are comparable, since 42 | 42.
b) The elements (a,b) € A, such that (a,b) < (2,5) are: (2,1),(2,5) and (1, n) for all
n € N\ {0}.
Justification: Let (a,b) € A. We distinguish the following cases:
Case a = 1: Since 1 | 2, we have (a,b) <ie (2, 5) for any b.
Case a = 2: Since 1 and 5 are the only natural numbers which divide 5, we have
(a,b) <jex (2,5) only for b € {1,5}.
Case a > 2: Since a [ 2, (a,b) < (2,5) cannot hold for any b.
o ({1,3,6,9,12}, | ) is not a lattice, since 9 and 12 do not have a common upper bound.
d) (4; =) is a poset. To prove this, we show that = is a partial order on A.
Reflexivity: For any a € A, by the reflexivity of <, we have a < q, hence, a=a.

Antisymmetry: Let a,b € A be such that a=b and b=a. This means that b < a and
a = b By the antisymmetry of =, it follows that a = b.

Transitivity: Let a,b,c € A be such that a=b and b=c. This means that b < a and
¢ = b. By the transitivity of <, we have ¢ < a. Hence, a=c.

6.2 Hasse Diagrams

a) The Hasse diagrams of the posets ({1,2,3}; <) and ({1,2,3,5,6,9}; | ) are as follows:
3 6\9
2\3/5
1

In both cases, 1 is the least and the only minimal element. In the poset ({1, 2, 3}; <),
the greatest and the only maximal element is 3. In the poset ({1,2,3,5,6,9}; | ) there
is no greatest element. The maximal elements in this poset are 5,6 and 9.
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6.3 The Lexicographic Order
For posets (A4; <) and (B; C) the lexicographic order <., on A x B is defined by

(a1,b1) <jex (ag,b2) <= a; < az V (a1 = a2 Ab; C by)

We show that <, is a partial order relation.

Reflexivity: Take any (a;1,b1) € A x B. Since L is reflexive, we have b; T b;. Hence, it is
true that (CLl =a; A0 C bl) and, thus, (al, bl) lex (al, b1>.

Antisymmetry: Take any (a1, b;) and (ag, b2) in A x B such that (a1,b1) <iex (a2, b2) and
(a2,b2) <iex (a1, b1). This means that

a1<a2\/(a1:a2/\b1§b2) and a2<a1\/(a2:a1/\bggbl).
~———r ~
1) (2) 3) (4)

We have to show that (a1, b1) = (a2, b2). The proof proceeds by case distinction.

(1) and (3): We have a; = as A a1 # az and a2 < a1 A ag # a;. But since < is
antisymmetric, it follows that a; = a2, which is a contradiction with a; # as.
Therefore, this case cannot occur.

(1) and (4): Wehavea; < as A ay # ag and aa = a1 Aby C by, which is a contradiction.
Therefore, this case also cannot occur.

(2) and (3): Wehave a; = as/Aby C by and ay < a1 A ag # aq, which is a contradiction.
Therefore, this case cannot occur as well.

(2) and (4): Wehave a; = aa/Ab; T by and ag = a1 Aby C by. Since C is antisymmetric,
it follows that b; = be. But we also have a; = ag and, thus, (a1, b1) = (az, b2).

Transitivity: Take any (a1, b1), (a2, b2), (a3, b3) in A x B such that (a1, b1) <jex (a2,b2) and
(az2,b2) <iex (a3, b3). This means that

CL1—<CL2\/(CL1:CLQ/\b1Eb2) and a2—<a3\/(a2:a3/\bggb3).
—— ~——
e 2 3) 4)

We have to show that (a1, b1) <iex (a3, b3). The proof proceeds by case distinction.

(1) and (3): We have a; < ag and ag < a3. Since =< is transitive we have a; =< as.
Moreover, if we had a; = a3, the antisymmetry of < would imply that a; = as,
a contradiction to a1 < as. Thus, a; # a3, and therefore a; < a3. Hence,
(a1,b1) <iex (a3,b3).

(1) and (4): We have a; < a2 and as = ag A by C bs. Hence, a; < a3 and, therefore,
(a1,b1) <iex (a3, b3).

(2) and (3): We have a; = a2 A by C be and a2 < as. Hence, a1 < a3 and, therefore,
(a1,b1) <jex (a3, b3).

(2) and (4): We have a; = az A by C by and ag = as A be C bs. It follows that a; = as.
Since L is transitive, we also have b; C bs. Therefore, (a1,b1) <iex (a3, b3).



6.4 Inverses of Functions
We prove the two implications separately.

( = ) Let g be a function such that g o f = id. We show that f is injective. Assume that
f(a) = f(b) for some a,b € A. Then

a=(gof)la) (gof=id)
= g(f(a)) (def. o)
=g(f(®)  (f(a)=f(b))

= (go f)(b) (def. o)
=b (go f=1id)

( <= ) Assume that f is injective. We construct a function g such that g o f = id as follows.
For any b € Im(f), by the injectivity of f, there exists a unique a such that f(a) = b, and
we define g(b) = a. For b ¢ Im(f), we define g(b) = b. We have g o f = id, because for any
a€ A, fla) € Im(f),sog(f(a)) = a.

Note: The choice g(b) = bin case b ¢ Im(f) is irrelevant. For example, we could set g(b) = ao for some fixed
ap € A.

6.5 Countability

For all / € N with £ > 1 we show that the set A, is uncountable by providing an injection
¢¢ from the uncountable set {0,1}*° (Theorem 3.23) to A,. This strategy can be used to
prove that any set is uncountable without reproducing any complicated diagonalization
argument from scratch. To see why this works, suppose that an injection

gZSg : {0, 1}00 — Ag (1)

exists, or equivalently (Definition 3.42) that {0,1}* < A,. Suppose, by contradiction, that
Ay is countable, thatis A, < N. By transitivity of < (Lemma 3.15) this implies that {0, 1}*° <
N, or in other words {0, 1} is countable, a contradiction.

We now show that indeed, for all / € N with £ > 1 an injection as in Equation (1) exists.
The idea is that for any ¢, we can simply take an infinite bit sequence and map it to the
bit sequence where ¢ zeroes are added between any two values of the original sequence:
for example for ¢ = 2 the sequence 111111... is mapped to 100100100100 . Intuitively,
this works because summing the first & pos1t1ons will yield a sum of at most |%] +1. The
reason is that all sequence values at positions that are not multiple of ¢ will be 0, and there
are at most L%J + 1 positions that are multiples of ¢ smaller or equal to k.

More formally, for all f € {0,1}* and for all n € N we define

(60()) () = {f (k) dfn=4k-£ @

0 otherwise.

First, we show that for all / € N with ¢/ > 1 and for all f € {0,1}*, indeed it is the case
that ¢y(f) € Ay. For all k € N (by performing division with remainder of k by ¢) we have



k=20 -k 4+ rforsome k' € Nand r € N with r < £. Therefore

k % k
S @)@ =D (6@ + D (s(NH)6E) (k=LK +r)
i=0 i=0 CR+1
%
= Z (6(f)) (@) +0 (Equation(®))
i=0
= Z 1) (Equation(®)) (3)
i=0
<K +1 (f(i) <1lforalli e N)
:kzrﬂ (k=C-k +7)
§%+1 (r>0and /¢ > 0).

Now, we show that ¢, is injective for all £ > 1. Suppose that ¢¢(f) = ¢¢(g) for some
f€{0,1}* and g € {0,1}*°. This means that for all £ € N it holds that

f(k) = (6e(f)) (k- €) (Equation @))
= (6e(9)) (k- ) (¢e(f) = pe(9)) 4)
= g(k) (Equation (2)).

This means that f = g and therefore ¢y is injective.

6.6 The Hunt for the Red October

The set Z x Z of possible parameters (v, sg) is countable due to the fact that Z is countable
(see Example 3.57) and Corollary 3.20. Thus, due to Theorem 3.17 there exists a bijection
Y : N = Z x 7. The strategy is to attempt the parameters in the sequence

¥(0),(1),¥(2),. ..

Since 1 is a bijection, Svetlana will find the correct values (7, 59) € Z x Z in the i-th attempt
(we start to count from zero), where

i =90, 5).

Hence, Svetlana only needs finitely many attempts, so she is guaranteed to find the correct
parameters in a finite time.

6.7 More Countability

a) The set of all Java programs is countable. Every Java program can be seen as a finite
binary sequence. That is, there is an injection from the set of all Java programs to the
set {0, 1}* of finite binary sequences. By Theorem 3.18, this set is countable.



b)

<)

d)

This set is uncountable. To prove this, we notice that {0,1}>° C A, which implies that
{0,1}*° < A (Lemma 3.15). Since {0, 1}*° is uncountable, A must be uncountable as
well (if A was countable, the transitivity of < would imply that {0, 1}°° is countable,
which is a contradiction).

An alternative proof. We can also apply directly the diagonalization argument.

Assume towards a contradiction that there is a bijection f : N — A. Let f3; ; denote the j-th number in
the i-th sequence. We define a new sequence as follows:

ol Ri10(Bo,o + 1), Rio(B1,1 + 1), Rio(B2,2 + 1),... ,

where R1o(a) denotes the remainder when «a is divided by 10. Of course, o € A. Moreover, there is no

n € N such that o = f(n), since o disagrees with a sequence f(n) on position n.

This set is uncountable. We can define an injective function f : [0,1] — C by f(z) =
(x, v1-— xz). Hence, we have [0,1] < C. Since [0, 1] is uncountable, C' must be

uncountable as well (if C' was countable, the transitivity of < would imply that [0, 1]
is countable as well, which is a contradiction).

Note: The fact that the interval [0, 1] is uncountable follows from Theorem 3.23 and the fact that any
element of {0, 1}°° can be interpreted as the binary expansion of a number in the interval [0, 1], and vice

versa.

To begin, consider the subset P C N of prime numbers and consider the inclusion
function
1:P—=N,
P p.

The function i is injective, as i(p) = i(p’) clearly implies p = p/. This means P < N
(Definition 3.42). Since P is infinite (hint), then P ~ N (Theorem 3.17), or equivalently
there exists a bijection between N and P. Let ¢ : N — P be such a bijective function.
We prove that S is uncountable by exhibiting an injection from {0,1}*° to S. In what
follows, we understand the set {0,1}° as the set of functions N — {0,1}. Consider
the following function

)

P {0,1}>* — 5,

f g (6)
where ¢ is defined as follows:
1 ifn=1,
g(n) =<0 if n # 1 and n is not prime, )

f(¢71(n)) otherwise.

First of all, we prove that v is well defined, that is, for all f € {0,1}°° it holds that
W(f) € S. Let f € {0,1}> and let g = ¥(f). Let n € N such that g(n) = 0. There are
three cases to consider.

- The first case is that n = 0. In this case, for all m € N we have 0 { m so that there
is nothing to check.

- The second case is that n ¢ {0,1} and n is not prime. In this case, if n | m then
m # 1 and m is not prime, so that g(m) = 0.



- The last case is that n is prime. In this case, if n | m then m is not prime, so that
g(m) = 0.

This shows that g € S.

Next, we show that 1 is injective. Suppose that ¢ (f) = ¢ (f’) for some f, f € {0,1}*.
Let g = ¢¥(f) and ¢’ = ¥(f’). This means that for all n € N it holds that g(n) = ¢'(n).
We want to show that f(n) = f’(n) forall n € N. Let n € N. Since ¢ is bijective we
have n = ¢~!(p) for some p € P. Therefore

fn)=f67'p) (n=¢""(p)
=9(p) (Def1n1t10n of g)
=4'(p) (g(n) = ¢'(n) for all n € N) ®)
= (¢~ (p)) (Deflmtlon of g)
=f'(n) (n=0¢""(p).

This shows that v is injective.



	Partial Order Relations
	Hasse Diagrams
	The Lexicographic Order
	Inverses of Functions
	Countability
	The Hunt for the Red October
	More Countability

