Diskrete Mathematik Solution 5

5.1 Computing Representations of Relations

a) We have $\rho^3 = \{(1,1), (1,3), (2,2), (4,4)\}$ and

$$M^{\rho^*} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

5.2 Operations on Relations

	Relation	reflexive	symmetric	transitive
a)	< 0	Х	Х	√
b)	$ \cup \equiv_2$	✓	×	X
c)	$ \cup ^{-1}$	✓	✓	X

- a) Two numbers (a,b) are in the relation whenever there exists an x such that a < x and $x \mid b$. This relation is not reflexive, since $(1,1) \not\in < \circ \mid$. Moreover, it is not symmetric, because $(1,2) \in < \circ \mid$, but $(2,1) \not\in < \circ \mid$. This relation is transitive. For any (a,b,c), assume that there exist some x and y, such that a < x, $x \mid b$, b < y and $y \mid c$. From $x \mid b$ it follows that $x \leq b$, hence, $a < x \leq b < y$. Therefore, a < y and $y \mid c$.
- **b)** Two numbers (a,b) are in the relation whenever $a \mid b$ or $a \equiv_2 b$. This relation is reflexive, since for any a, we have $a \equiv_2 a$ (alternatively, one could use the fact that $a \mid a$). It is, however, not symmetric, because $(1,2) \in |\cup \equiv_2$, but $(2,1) \notin |\cup \equiv_2$. It is also not transitive, since $(3,1) \in |\cup \equiv_2$ and $(1,2) \in |\cup \equiv_2$, but $(3,2) \notin |\cup \equiv_2$.
- c) Two numbers (a, b) are in the relation whenever $a \mid b$ or $b \mid a$. This relation is reflexive, since for any a, we have $a \mid a$. It is also symmetric, because for any (a, b), we trivially have $a \mid b$ or $b \mid a$ if and only if $b \mid a$ or $a \mid b$. The relation is, however, not transitive, since $(3, 1) \in | \cup |^{-1}$ and $(1, 2) \in | \cup |^{-1}$ but $(3, 2) \notin | \cup |^{-1}$.

5.3 A False Proof

- a) For an arbitrary $x \in A$, there does not always exist a $y \in A$ such that $x \rho y$.
- **b)** Consider the following counterexample: $A = \{1, 2\}$ and $\rho = \{(1, 1)\}$. The relation ρ is symmetric and transitive. However, it is not reflexive, since $2 \rho 2$ does not hold.

5.4 An Equivalence Relation

- a) We prove that \sim satisfies all properties of an equivalence relation.
 - **Reflexivity:** For any point $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, we have $(x,y) \sim (x,y)$, because one can choose $\lambda = 1$ in the definition of \sim .
 - **Symmetry:** Let $x_1, y_1, x_2, y_2 \in \mathbb{R} \setminus \{0\}$ and assume that $(x_1, y_1) \sim (x_2, y_2)$. It follows that $x_1 = \lambda x_2$ and $y_1 = \lambda y_2$ for some $\lambda > 0$. Hence, $x_2 = \frac{1}{\lambda} x_1$ and $y_2 = \frac{1}{\lambda} y_1$, where $\frac{1}{\lambda} > 0$. Therefore, $(x_2, y_2) \sim (x_1, y_1)$.
 - **Transitivity:** Let $x_1, y_1, x_2, y_2, x_3, y_3 \in \mathbb{R} \setminus \{0\}$ and assume that $(x_1, y_1) \sim (x_2, y_2)$ and $(x_2, y_2) \sim (x_3, y_3)$. This means that $(x_1, y_1) = (\lambda_1 x_2, \lambda_1 y_2)$ and $(x_2, y_2) = (\lambda_2 x_3, \lambda_2 y_3)$ for some $\lambda_1, \lambda_2 > 0$. It follows that $(x_1, y_1) = (\lambda x_3, \lambda y_3)$, where $\lambda > 0$ is defined as $\lambda_1 \lambda_2$. Hence, $(x_1, y_1) \sim (x_3, y_3)$.
- **b)** An equivalence class $[(x,y)]_{\sim}$ contains all points on the ray through the origin (0,0) and the point (x,y) (excluding the origin). Note that no equivalence class can contain the origin (0,0) (\sim is only defined on $\mathbb{R}^2 \setminus \{(0,0)\}$).

5.5 Properties of Relations

a) The claim is false. We prove this by a counter example: In particular, we show that there exists a relation ρ on a set A such that ρ^2 is symmetric on A but ρ is not symmetric on A.

Let $A = \{0, 1, 2, 3\}$ and ρ be defined on A by

$$a \rho b \stackrel{\text{def}}{\iff} b \equiv_4 a + 1.$$

Then clearly ρ is not symmetric, as for a=0 and b=1 we have $a \rho b$, but $b \rho a$ is false as $0 \not\equiv_4 2$. On the other hand, we have for arbitrary $a,b \in A$

$$a \rho^{2} b \iff \exists c \ (a \rho c \wedge c \rho b)$$

$$\iff \exists c \ (c \equiv_{4} a + 1 \wedge b \equiv_{4} c + 1)$$

$$\iff \exists c \ (c + 2 \equiv_{4} a + 3 \wedge b + 2 \equiv_{4} c + 3) \qquad \text{[justification: add 2 on both sides]}$$

$$\iff \exists d \ (d \equiv_{4} a + 3 \wedge b \equiv_{4} d + 3) \qquad \text{[justification: let } d \in A \text{ such that } d \equiv_{4} c + 2 \text{]}$$

$$\iff \exists d \ (b \equiv_{4} d + 3 \wedge d \equiv_{4} a + 3)$$

$$\iff \exists d \ (d \equiv_{4} b + 1 \wedge a \equiv_{4} d + 1)$$

$$\iff \exists d \ (b \rho d \wedge d \rho a)$$

$$\iff b \rho^{2} a.$$

Hence, ρ^2 is symmetric.

b) The claim is false. We prove this by a counter example: In particular, we show that there exists a relation ρ on a set A such that ρ is symmetric and antisymmetric, but $\rho \neq \operatorname{id}_A$.

(In fact, one can show that for any relation ρ on a set A it holds: If ρ is symmetric and antisymmetric, then $\rho \subseteq \operatorname{id}_A$; but, as noted above, equality does not necessarily hold.) A simple counter example is A being an arbitrary non-empty set and $\rho = \emptyset$, i.e. $a \rho b$ is false for all $a, b \in A$. It follows immediately from the definitions of symmetric and antisymmetric relations that ρ satisfies both required properties:

For any $a, b \in A$ we have

$$a \rho b \stackrel{\cdot}{\iff} (a, b) \in \rho \stackrel{\cdot}{\iff} (b, a) \in \rho \stackrel{\cdot}{\iff} b \rho a$$

hence, ρ is symmetric. On the other hand, since $a \rho b$ and $b \rho a$ are both false for any $a,b \in A$, it holds that

$$(a \rho b \wedge b \rho a) \implies a = b$$

for all $a, b \in A$. Hence, ρ is also antisymmetric.

c) The claim is true. As ρ is a relation on \mathbb{Z} , hence $\rho^2 \subseteq \mathbb{Z} \times \mathbb{Z}$ by definition, it suffices to show that $\mathbb{Z} \times \mathbb{Z} \subseteq \rho^2$. This is equivalent to showing that for all $a,b \in \mathbb{Z}$ it holds $(a,b) \in \rho^2$. We show this by case distinction over the cases $a \equiv_2 b$ and $a \not\equiv_2 b$. Clearly, one of these cases must be true for any $(a,b) \in \mathbb{Z} \times \mathbb{Z}$. Hence, once we proved the statement for both cases, it follows that the general statement is true.

First, let $a, b \in \mathbb{Z}$ be arbitrary such that $a \equiv_2 b$. By definition of ρ_2 we have $a \rho_2 b$. Furthermore, it trivially holds $b \rho_2 b$. This implies $a \rho_2^2 b$ and hence $a \rho^2 b$ since $\rho_2 \subseteq \rho$. Now consider the case $a \not\equiv_2 b$. By definition of \equiv_2 there must exist $k \in \mathbb{Z}$ such that a - b = 2k + 1. Let c = b + 2(k + 1). Then we have c = a + 1, hence $a \rho_1 c$ and since $\rho_1 \subseteq \rho$ we get $a \rho c$. On the other hand, we have $c \equiv_2 b$, hence $c \rho_2 b$ and since $\rho_2 \subseteq \rho$, this gives $c \rho b$. This implies $a \rho^2 b$ by the definition of composition of relations.

5.6 Lifting an Operation to Equivalence Classes

a) We define the function sum : $A^2 \rightarrow A$ by

$$\operatorname{sum}((a,b),(c,d)) \stackrel{\text{def}}{=} (ad+bc,bd).$$

Observe that $bd \neq 0$ since $b \neq 0$ and $d \neq 0$.

b) f is θ -consistent if and only if

$$(b_1 \theta b'_1 \text{ and } b_2 \theta b'_2) \implies f(b_1, b_2) \theta f(b'_1, b'_2)$$

is true for all $b_1, b_2, b'_1, b'_2 \in B$. Alternatively (and equivalently) we could say that f is θ -consistent if and only if

$$([b_1]_{\theta} = [b_1']_{\theta} \text{ and } [b_2]_{\theta} = [b_2']_{\theta}) \implies [f(b_1, b_2)]_{\theta} = [f(b_1', b_2')]_{\theta}$$

is true for all $b_1, b_2, b'_1, b'_2 \in B$.

c) Let $(a, b), (a', b'), (c, d), (c', d') \in A$ be arbitrary. We have

$$(a,b) \sim (a',b') \text{ and } (c,d) \sim (c',d')$$

$$\Leftrightarrow ab' = ba' \text{ and } cd' = dc' \qquad (\text{def.} \sim)$$

$$\Rightarrow ab' \cdot dd' + cd' \cdot bb' = ba' \cdot dd' + dc' \cdot bb'$$

$$\Leftrightarrow ad \cdot b'd' + bc \cdot b'd' = bd \cdot a'd' + bd \cdot b'c' \qquad (\text{comm.})$$

$$\Leftrightarrow (ad + bc) \cdot b'd' = bd \cdot (a'd' + b'c') \qquad (\text{distr.})$$

$$\Leftrightarrow (ad + bc,bd) \sim (a'd' + b'c',b'd') \qquad (\text{def.} \sim)$$

$$\Leftrightarrow \text{sum}((a,b),(c,d)) \sim \text{sum}((a',b'),(c',d')). \qquad (\text{def. sum})$$

Hence, sum is \sim -consistent.