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5.1 Computing Representations of Relations

a) We have ρ3 = {(1, 1), (1, 3), (2, 2), (4, 4)} and

Mρ∗ =


1 1 1 1
1 1 1 1
0 0 0 0
1 1 1 1


5.2 Operations on Relations

Relation reflexive symmetric transitive
a) < ◦ | ✗ ✗ ✓

b) | ∪ ≡2 ✓ ✗ ✗

c) | ∪ |−1 ✓ ✓ ✗

a) Two numbers (a, b) are in the relation whenever there exists an x such that a < x and
x | b. This relation is not reflexive, since (1, 1) ̸∈ < ◦ |. Moreover, it is not symmetric,
because (1, 2) ∈ < ◦ |, but (2, 1) ̸∈ < ◦ |. This relation is transitive. For any (a, b, c),
assume that there exist some x and y, such that a < x, x | b, b < y and y | c. From
x | b it follows that x ≤ b, hence, a < x ≤ b < y. Therefore, a < y and y | c.

b) Two numbers (a, b) are in the relation whenever a | b or a ≡2 b. This relation is
reflexive, since for any a, we have a ≡2 a (alternatively, one could use the fact that
a | a). It is, however, not symmetric, because (1, 2) ∈ | ∪ ≡2, but (2, 1) ̸∈ | ∪ ≡2. It is
also not transitive, since (3, 1) ∈ | ∪ ≡2 and (1, 2) ∈ | ∪ ≡2, but (3, 2) ̸∈ | ∪ ≡2.

c) Two numbers (a, b) are in the relation whenever a | b or b | a. This relation is reflexive,
since for any a, we have a | a. It is also symmetric, because for any (a, b), we trivially
have a | b or b | a if and only if b | a or a | b. The relation is, however, not transitive,
since (3, 1) ∈ | ∪ |−1 and (1, 2) ∈ | ∪ |−1 but (3, 2) ̸∈ | ∪ |−1.

5.3 A False Proof

a) For an arbitrary x ∈ A, there does not always exist a y ∈ A such that x ρ y.

b) Consider the following counterexample: A = {1, 2} and ρ = {(1, 1)}. The relation ρ
is symmetric and transitive. However, it is not reflexive, since 2 ρ 2 does not hold.



5.4 An Equivalence Relation

a) We prove that ∼ satisfies all properties of an equivalence relation.

Reflexivity: For any point (x, y) ∈ R2 \ {(0, 0)}, we have (x, y) ∼ (x, y), because one
can choose λ = 1 in the definition of ∼.

Symmetry: Let x1, y1, x2, y2 ∈ R \ {0} and assume that (x1, y1) ∼ (x2, y2). It follows
that x1 = λx2 and y1 = λy2 for some λ > 0. Hence, x2 = 1

λx1 and y2 = 1
λy1,

where 1
λ > 0. Therefore, (x2, y2) ∼ (x1, y1).

Transitivity: Let x1, y1, x2, y2, x3, y3 ∈ R \ {0} and assume that (x1, y1) ∼ (x2, y2)
and (x2, y2) ∼ (x3, y3). This means that (x1, y1) = (λ1x2, λ1y2) and (x2, y2) =
(λ2x3, λ2y3) for some λ1, λ2 > 0. It follows that (x1, y1) = (λx3, λy3), where
λ > 0 is defined as λ1λ2. Hence, (x1, y1) ∼ (x3, y3).

b) An equivalence class [(x, y)]∼ contains all points on the ray through the origin (0, 0)
and the point (x, y) (excluding the origin). Note that no equivalence class can contain
the origin (0, 0) (∼ is only defined on R2 \ {(0, 0)}).

5.5 Properties of Relations

a) The claim is false. We prove this by a counter example: In particular, we show that
there exists a relation ρ on a set A such that ρ2 is symmetric on A but ρ is not sym-
metric on A.
Let A = {0, 1, 2, 3} and ρ be defined on A by

a ρ b
def⇐⇒ b ≡4 a+ 1.

Then clearly ρ is not symmetric, as for a = 0 and b = 1 we have a ρ b, but b ρ a is false
as 0 ̸≡4 2. On the other hand, we have for arbitrary a, b ∈ A

aρ2 b
·⇐⇒ ∃c (a ρ c ∧ c ρ b)
·⇐⇒ ∃c (c ≡4 a+ 1 ∧ b ≡4 c+ 1)
·⇐⇒ ∃c (c+ 2 ≡4 a+ 3 ∧ b+ 2 ≡4 c+ 3) [justification: add 2 on both sides]
·⇐⇒ ∃d (d ≡4 a+ 3 ∧ b ≡4 d+ 3) [justification: let d ∈ A such that d ≡4 c+ 2]
·⇐⇒ ∃d (b ≡4 d+ 3 ∧ d ≡4 a+ 3)
·⇐⇒ ∃d (d ≡4 b+ 1 ∧ a ≡4 d+ 1)
·⇐⇒ ∃d (b ρ d ∧ d ρ a)
·⇐⇒ b ρ2 a.

Hence, ρ2 is symmetric.

b) The claim is false. We prove this by a counter example: In particular, we show that
there exists a relation ρ on a set A such that ρ is symmetric and antisymmetric, but
ρ ̸= idA.



(In fact, one can show that for any relation ρ on a set A it holds: If ρ is symmetric and
antisymmetric, then ρ ⊆ idA; but, as noted above, equality does not necessarily hold.)
A simple counter example is A being an arbitrary non-empty set and ρ = ∅, i.e. a ρ b
is false for all a, b ∈ A. It follows immediately from the definitions of symmetric and
antisymmetric relations that ρ satisfies both required properties:
For any a, b ∈ A we have

a ρ b
·⇐⇒ (a, b) ∈ ρ

·⇐⇒ (b, a) ∈ ρ
·⇐⇒ b ρ a,

hence, ρ is symmetric. On the other hand, since a ρ b and b ρ a are both false for any
a, b ∈ A, it holds that

(a ρ b ∧ b ρ a) =⇒ a = b

for all a, b ∈ A. Hence, ρ is also antisymmetric.

c) The claim is true. As ρ is a relation on Z, hence ρ2 ⊆ Z × Z by definition, it suffices
to show that Z × Z ⊆ ρ2. This is equivalent to showing that for all a, b ∈ Z it holds
(a, b) ∈ ρ2. We show this by case distinction over the cases a ≡2 b and a ̸≡2 b. Clearly,
one of these cases must be true for any (a, b) ∈ Z × Z. Hence, once we proved the
statement for both cases, it follows that the general statement is true.
First, let a, b ∈ Z be arbitrary such that a ≡2 b. By definition of ρ2 we have a ρ2 b.
Furthermore, it trivially holds b ρ2 b. This implies a ρ22 b and hence a ρ2 b since ρ2 ⊆ ρ.
Now consider the case a ̸≡2 b. By definition of ≡2 there must exist k ∈ Z such that
a − b = 2k + 1. Let c = b + 2(k + 1). Then we have c = a + 1, hence a ρ1 c and since
ρ1 ⊆ ρ we get a ρ c. On the other hand, we have c ≡2 b, hence c ρ2 b and since ρ2 ⊆ ρ,
this gives c ρ b. This implies a ρ2 b by the definition of composition of relations.

5.6 Lifting an Operation to Equivalence Classes

a) We define the function sum : A2 → A by

sum((a, b), (c, d))
def
= (ad+ bc, bd).

Observe that bd ̸= 0 since b ̸= 0 and d ̸= 0.

b) f is θ-consistent if and only if

(b1 θ b′1 and b2 θ b′2) =⇒ f(b1, b2) θ f(b′1, b
′
2)

is true for all b1, b2, b′1, b
′
2 ∈ B. Alternatively (and equivalently) we could say that f is

θ-consistent if and only if

([b1]θ = [b′1]θ and [b2]θ = [b′2]θ) =⇒ [f(b1, b2)]θ = [f(b′1, b
′
2)]θ

is true for all b1, b2, b′1, b
′
2 ∈ B.



c) Let (a, b), (a′, b′), (c, d), (c′, d′) ∈ A be arbitrary. We have

(a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′)
·⇐⇒ ab′ = ba′ and cd′ = dc′ (def. ∼)
·

=⇒ ab′ · dd′ + cd′ · bb′ = ba′ · dd′ + dc′ · bb′
·⇐⇒ ad · b′d′ + bc · b′d′ = bd · a′d′ + bd · b′c′ (comm.)
·⇐⇒ (ad+ bc) · b′d′ = bd · (a′d′ + b′c′) (distr.)
·⇐⇒ (ad+ bc, bd) ∼ (a′d′ + b′c′, b′d′) (def. ∼)
·⇐⇒ sum((a, b), (c, d)) ∼ sum((a′, b′), (c′, d′)). (def. sum)

Hence, sum is ∼-consistent.
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