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Diskrete Mathematik

Solution 5

5.1 Computing Representations of Relations

a) We have p3 = {(1,1),(1,3),(2,2), (4,4)} and
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5.2 Operations on Relations

Relation | reflexive symmetric transitive

Q) <o X X 7
b) U=, v X X
o |u|t v v X

a) Two numbers (a, b) are in the relation whenever there exists an x such that a < z and
x | b. This relation is not reflexive, since (1,1) ¢ < o |. Moreover, it is not symmetric,
because (1,2) € < o |, but (2,1) ¢ < o |. This relation is transitive. For any (a, b, ¢),
assume that there exist some x and y, such thata < z, z |b, b < y and y | c. From
x | bit follows that z < b, hence, a < x < b < y. Therefore, a < yand y | c.

b) Two numbers (a,b) are in the relation whenever a | b or a =2 b. This relation is
reflexive, since for any a, we have a =» a (alternatively, one could use the fact that
a | a). It is, however, not symmetric, because (1,2) € |U =, but (2,1) ¢ |U =,. Itis
also not transitive, since (3,1) € |U=q2and (1,2) € |U=5,but (3,2) & |U=,.

¢) Two numbers (a, b) are in the relation whenever a | b or b | a. This relation is reflexive,
since for any a, we have a | a. It is also symmetric, because for any (a, b), we trivially
have a | bor b | aif and only if b | a or a | b. The relation is, however, not transitive,
since (3,1) € |U|~tand (1,2) € |U| ' but (3,2) & |U|~%

5.3 A False Proof

a) For an arbitrary = € A, there does not always exista y € A such thatz p y.

b) Consider the following counterexample: A = {1,2} and p = {(1,1)}. The relation p
is symmetric and transitive. However, it is not reflexive, since 2 p 2 does not hold.



5.4 An Equivalence Relation
a) We prove that ~ satisfies all properties of an equivalence relation.

Reflexivity: For any point (z,y) € R?\ {(0,0)}, we have (z,y) ~ (,y), because one
can choose A = 1 in the definition of ~.

Symmetry: Let x1,y1,22,y2 € R\ {0} and assume that (z1,y1) ~ (z2,y2). It follows
that 1 = Axs and y1 = Ay for some A > 0. Hence, x5 = %501 and yo = %yl,
where % > 0. Therefore, (2, y2) ~ (x1,y1)-

Transitivity: Let x1,y1, 22, Y2, 3,y3 € R\ {0} and assume that (z1,y1) ~ (z2,2)
and (z2,y2) ~ (x3,y3). This means that (z1,y1) = (A1x2, A\1y2) and (z2,y2) =
(Aoxs, Aays) for some A\, Ay > 0. It follows that (z1,y1) = (Axs3, Ay3), where
A > 0is defined as A; \2. Hence, (z1,y1) ~ (23, y3)-

b) An equivalence class [(z,y)]~ contains all points on the ray through the origin (0, 0)
and the point (z, y) (excluding the origin). Note that no equivalence class can contain
the origin (0, 0) (~ is only defined on R? \ {(0,0)}).

5.5 Properties of Relations

a) The claim is false. We prove this by a counter example: In particular, we show that
there exists a relation p on a set A such that p? is symmetric on A but p is not sym-
metric on A.

Let A = {0,1,2,3} and p be defined on A by

apb Lt b=4a+1.

Then clearly p is not symmetric, as for a = 0 and b = 1 we have a pb, but b pa is false
as 0 #4 2. On the other hand, we have for arbitrary a,b € A

ap’b <= 3Jc(apc A cpb)
< Jde(c=ga+1 Ab=4c+1)
< Je(c+2=4a+3 Nb+2=4¢+3) justification: add 2 on both sides]
< dd(d=4a+3 N b=4d+3) justification: let d € A such thatd =4 ¢ + 2]
< dd(b=4d+3 N d=4a+3)
< Jd(d=4b+1 AN a=4d+1)
<= 3d (bpd A dpa)
<= bp’a.

Hence, p? is symmetric.

b) The claim is false. We prove this by a counter example: In particular, we show that
there exists a relation p on a set A such that p is symmetric and antisymmetric, but

p 7 ida.



(In fact, one can show that for any relation p on a set A it holds: If p is symmetric and
antisymmetric, then p C id4; but, as noted above, equality does not necessarily hold.)

A simple counter example is A being an arbitrary non-empty set and p = &, i.e. apb
is false for all a,b € A. It follows immediately from the definitions of symmetric and
antisymmetric relations that p satisfies both required properties:

For any a,b € A we have
apb <= (a,b) € p < (b,a) € p < bpa,

hence, p is symmetric. On the other hand, since a pb and b p a are both false for any
a,b € A, it holds that
(apb N bpa) = a=0b

forall a,b € A. Hence, p is also antisymmetric.

¢) The claim is true. As p is a relation on Z, hence p?> C Z x Z by definition, it suffices
to show that Z x Z C p2. This is equivalent to showing that for all a,b € Z it holds
(a,b) € p>. We show this by case distinction over the cases a =2 band a #3 b. Clearly,
one of these cases must be true for any (a,b) € Z x Z. Hence, once we proved the
statement for both cases, it follows that the general statement is true.

First, let a,b € Z be arbitrary such that a =, b. By definition of p; we have a p; b.
Furthermore, it trivially holds b ps b. This implies a p3 b and hence a p* b since p C p.

Now consider the case a #Z5 b. By definition of =5 there must exist k € Z such that
a—b=2k+1. Letc=b+ 2(k+ 1). Then we have ¢ = a + 1, hence a p; ¢ and since
p1 € p we get a pc. On the other hand, we have ¢ =3 b, hence c p2 b and since py C p,
this gives c pb. This implies a p? b by the definition of composition of relations.

5.6 Lifting an Operation to Equivalence Classes

a) We define the function sum : A> — Aby

sum((a,b), (c,d)) % (ad + be, bd).

Observe that bd # 0 since b # 0 and d # 0.
b) fis O-consistent if and only if

(bl 0 bll and bg 0 bIQ) — f(bl,bg) 0 f( /1,5/2)

is true for all by, bo, b}, b, € B. Alternatively (and equivalently) we could say that f is
-consistent if and only if

([br]o = [Dh]p and [bols = [b5)a) = [f(by, b2)lo = [f (b1, 05)]g

is true for all by, by, b}, b, € B.



o Let (a,b),(d,V'),(c,d),(c,d") € Abe arbitrary. We have

(a,b) ~ (a',V)and (c,d) ~ (c,d)

<= ab/ = ba' and cd’ = dc’ (def. ~)
= ab' - dd' + cd - bb' = ba' - dd' + dc’ - bb

<= ad-V'd +bc-b'd =bd-d'd +bd-bc (comm.)
< (ad +bc)-b'd =bd- (d'd +b'c) (distr.)
s (ad+be,bd) ~ (dd +VVd) (def. ~)
<= sum((a,b), (c,d)) ~ sum((d’,b),(c,d")). (def. sum)

Hence, sum is ~-consistent.
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