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4.1 Case Distinction with Any Number of Sets

We define the predicate P by

P (k) = 1 ⇐⇒ (A1 ∨ · · · ∨Ak) ∧ (A1 → B) ∧ · · · ∧ (Ak → B) |= B.

We want to prove that P (k) = 1 for all k ≥ 1. We proceed by induction.
Basis Step. The statement P (1) is proven to be true in Lemma 2.7.
Induction Step. Assume that P (k) = 1. We want to show that P (k + 1) = 1.
Suppose that a certain truth assignment of the propositional symbols A1, . . . , Ak+1, B makes
the formula

(A1 ∨ · · · ∨Ak+1) ∧ (A1 → B) ∧ · · · ∧ (Ak+1 → B)

true. This means that (Ai → B) is true for all i ∈ {1, . . . , k + 1} and (A0 ∨ · · · ∨ Ak+1) is
true. Since (A1 ∨ · · · ∨ Ak+1) is true, then Ai must be true for some i ∈ {1, . . . , k + 1}. We
distinguish two cases:

• Case 1: Ak+1 is true. Since Ak+1 → B is true, then B must be true under the given
truth assignment (modus ponens).

• Case 2: Ak+1 is false. Since (A1 ∨ · · · ∨ Ak+1) is true, then Ai must be true for some
i ∈ {1, . . . , k}. Since by induction hypothesis we know that P (k) = 1, this means that
B is true under the given truth assignment.

The case distinction is sound because under a given truth assignment Ak+1 is true or false.
This shows that P (k) = 1 ⇒ P (k + 1) = 1 for all k ≥ 1. By induction, we conclude that
P (k) = 1 for all k ≥ 1.

4.2 Element or Subset
i) A ∈ B and A ̸⊆ B ii) A ∈ B and A ⊆ B
iii) A /∈ B and A ⊆ B iv) A ∈ B and A ⊆ B

4.3 Operations on Sets

The following sets fulfill the conditions:

a) A = {∅}
For x = ∅ we have x ∈ A. Also, the empty set is the subset of any other set, so x ⊆ A.
This is not the only solution. For example, A = {7, {7}} also fulfills the given condition.



b) A = {∅, 1}
We have P(A) = {∅, {∅}, {1}, {∅, 1}}. Since 1 ̸∈ P(A), it holds that A ̸⊆ P(A). Also,
for x = ∅ we have x ∈ A and x ⊆ P(A) (since the empty set is the subset of any set).

c) A = ∅
We have ∅ ⊆ P(A). The second requirement is trivially fulfilled, since A has no
elements.

4.4 Cardinality

First, notice that A = {∅, {∅}}. With that said, we give the solutions to individual sub-
tasks:

i) A ∪B = {∅, {∅}, {{∅}}, {∅, {∅}}}, |A ∪B| = 4

ii) A ∩B = {{∅}}, |A ∩B| = 1

iii) ∅×A = ∅, |∅×A| = 0

iv) {0} × {3, 1} = {(0, 3), (0, 1)}, |{0} × {3, 1}| = 2

v) {{1, 2}} × {3} = {({1, 2}, 3)}, |{{1, 2}} × {3}| = 1

vi) P({∅}) = {∅, {∅}}, |P({∅})| = 2

4.5 Proving/Disproving Set Properties

a) This claim is false. We prove this by providing a counterexample: Let A = B = C =
{x}, i.e. all three sets A,B,C only contain the single element x. We now prove that
x ∈

(
(A∪(B\C))∩(B∩C)

)
, which by definition of ∅ implies (A∪(B\C))∩(B∩C) ̸=

∅.
We have x ∈ A and

x ∈ A
·

=⇒ x ∈ A ∨ x ∈ (B \ C) [definition of ∨]
·

=⇒ x ∈
(
A ∪ (B \ C)

)
[definition of ∪]

On the other hand, we have x ∈ B and x ∈ C, and

x ∈ B ∧ x ∈ C
·

=⇒ x ∈ (B ∩ C) [definition of ∩]

Again applying the definition of ∩, it follows x ∈
(
(A ∪ (B \ C)) ∩ (B ∩ C)

)
.

b) This claim is true. For any x it holds

x ∈ (A ∩ (B \ C))
·⇐⇒ x ∈ A ∧ x ∈ (B \ C) [definition of ∩]
·⇐⇒ x ∈ A ∧ (x ∈ B ∧ ¬(x ∈ C)) [definition of \]
·⇐⇒ (x ∈ A ∧ x ∈ B) ∧ ¬(x ∈ C) [ associativity of ∧]



On the other hand, we have

x ∈
(
(A ∩B) \ ((A ∩B) ∩ C)

)
·⇐⇒ x ∈ (A ∩B) ∧ ¬

(
x ∈ ((A ∩B) ∩ C)

)
[def. of \]

·⇐⇒ (x ∈ A ∧ x ∈ B) ∧ ¬
(
(x ∈ A ∧ x ∈ B) ∧ x ∈ C

)
[def. of ∩]

·⇐⇒ (x ∈ A ∧ x ∈ B) ∧
(
¬(x ∈ A ∧ x ∈ B) ∨ ¬(x ∈ C)

)
[¬(F ∧G) ≡ ¬F ∨ ¬G]

·⇐⇒
(
(x ∈ A ∧ x ∈ B) ∧ ¬(x ∈ A ∧ x ∈ B)

)
[F ∧ (G ∨H)

∨
(
(x ∈ A ∧ x ∈ B) ∧ ¬(x ∈ C)

)
≡ (F ∧G) ∨ (F ∧H)]

·⇐⇒ ⊥ ∨
(
(x ∈ A ∧ x ∈ B) ∧ ¬(x ∈ C)

)
[F ∧ ¬F ≡ ⊥]

·⇐⇒
(
(x ∈ A ∧ x ∈ B) ∧ ¬(x ∈ C)

)
∨ ⊥ [commutativity of ∨]

·⇐⇒ (x ∈ A ∧ x ∈ B) ∧ ¬(x ∈ C) [F ∨ ⊥ ≡ F ]

Combining the two results, we proved the claim.

c) This claim is true, which we prove in the following by showing that two special sets
must always lie in P(P(A) × P(B)). For any sets A and B, by Lemma 3.6 it holds
∅ ⊆ A and ∅ ⊆ B. Hence, by the definition of the power set P , we get

∅ ∈ P(A) and ∅ ∈ P(B). (1)

Now by the definition of the Cartesian product we have (∅,∅) ∈ P(A)×P(B). This,
by the definition of subsets, implies {(∅,∅)} ⊆ P(A) × P(B). Again applying the
definition of power sets, we get {(∅,∅)} ∈ P(P(A)× P(B)).
Now, applying Lemma 3.6 on the set P(A)× P(B), we also have ∅ ⊆ P(A)× P(B).
Thus, by the definition of power sets, it must hold

∅ ∈ P(P(A)× P(B)). (2)

Combining Equation (1) and Equation (2) we see that for any sets A and B there
are at least two distinct element in P(P(A) × P(B)), which (using the definition of
cardinality of sets) immediately implies the claim, i.e. |P(P(A)× P(B))| ≥ 2.



4.6 Relating Two Power Sets

a) For any C, we have

C ∈ P(A ∩B)
·⇐⇒ C ⊆ A ∩B (definition of P)
·⇐⇒ ∀c

(
c ∈ C → c ∈ A ∩B

)
(definition of ⊆)

·⇐⇒ ∀c
(
c ∈ C → (c ∈ A ∧ c ∈ B)

)
(definition of ∩)

·⇐⇒ ∀c
(
(c ∈ C → c ∈ A) ∧ (c ∈ C → c ∈ B)

)
(∗)

·⇐⇒ ∀c (c ∈ C → c ∈ A) ∧ ∀c (c ∈ C → c ∈ B) (∗∗)
·⇐⇒ C ⊆ A ∧ C ⊆ B (definition of ⊆)
·⇐⇒ C ∈ P(A) ∧ C ∈ P(B) (definition of P)
·⇐⇒ C ∈ P(A) ∩ P(B) (definition of ∩)

(∗) We use the fact that for any formulas A1, A2 and A3, we have A1 → (A2 ∧ A3) ≡
¬A1 ∨ (A2 ∧A3) ≡ (¬A1 ∨A2)∧ (¬A1 ∨A3) ≡ (A1 → A2)∧ (A1 → A3). (This follows
from Lemma 2.1.)
(∗∗) We use the fact that ∀xP (x) ∧ ∀xQ(x) ≡ ∀x(P (x) ∧ Q(x)) for any predicates P
and Q (see Chapter 2.4.8 of the lecture notes).

b) To prove that the statement is false, we show a counterexample. Let A = {1} and
B = {2}. We have P(A) ∪ P(B) = {∅, {1}} ∪ {∅, {2}} = {∅, {1}, {2}}. On the other
hand, P(A ∪B) = P({1, 2}) = {∅, {1}, {2}, {1, 2}}.

c) We will prove the implication in both directions separately.

A ⊆ B =⇒ P(A) ⊆ P(B): Let B be any set and let A be any subset of B. What we
have to show is that each element of P(A) is also an element of P(B). Let S be
any element of P(A). Then, by Definition 3.7, S ⊆ A. By the assumption that
A ⊆ B and by the transitivity of ⊆, it follows that S ⊆ B. This means that S is
an element of P(B).

P(A) ⊆ P(B) =⇒ A ⊆ B: Let A,B be any sets and assume that P(A) ⊆ P(B).
Since A ∈ P(A) (which holds for any set A) and, by assumption, P(A) ⊆ P(B),
we have that A ∈ P(B). By Definition 3.7, this means that A ⊆ B.

4.7 Special Families of Sets

a) We prove that the statement is true by checking that all the required properties hold
for A = P(X).

• P(X) ⊆ P(X) trivially holds.

• Since X ̸= ∅ then P(X) ̸= ∅.



• Let A,B ∈ P(X). We have

A ∪B ∈ P(X)
·⇐⇒ A ∪B ⊆ X (Definition of P)
·⇐⇒ ∀x (x ∈ A ∪B → x ∈ X) (Definition of ⊆)
·⇐⇒ ∀x ((x ∈ A ∨ x ∈ B) → x ∈ X) (Definition of ∪)
·⇐⇒ ∀x ((x ∈ A → x ∈ X) ∧ (x ∈ B → x ∈ X)) (∗)
·⇐⇒ ∀x (x ∈ A → x ∈ X) ∧ ∀x (x ∈ B → x ∈ X) (∗∗)
·⇐⇒ A ⊆ X ∧B ⊆ X (Definition of ⊆ twice)
·⇐⇒⊤ (By Assumption)

(∗) We use the fact that (F ∨ G) → H ≡ ¬(F ∨ G) ∨ H ≡ (¬F ∧ ¬G) ∨ H ≡
(¬F ∨H) ∧ (¬G ∨H) ≡ (F → H) ∧ (G → H). See Lemma 2.1.
(∗∗) We use the fact that ∀xP (x)∧∀xQ(x) ≡ ∀x(P (x)∧Q(x)) for any predicates
P and Q (see Chapter 2.4.8 of the lecture notes).

• Let A,B ∈ P(X), that is A,B ⊆ X . We have

x ∈ A ∩B
·⇐⇒ x ∈ A ∧ x ∈ B (Definition of ∩)
·

=⇒ x ∈ X ∧ x ∈ X (Definition of ⊆ twice)
·

=⇒ x ∈ X (A ∧A ≡ A)

• Let A ∈ P(X), that is A ⊆ X . We have

x ∈ X \A ·⇐⇒ x ∈ X ∧ x /∈ A
·

=⇒ x ∈ X

which shows that X \A ⊆ X , that is X \A ∈ P(X).

b) The statement is false. Notice that X ∈ {X}, but X \ X = ∅ /∈ {X}. Therefore, the
last property does not hold, and QX({X}) = 0.

c) The statement is true. Suppose that QX(A) = 1. This means (by the second property)
that A ≠ ∅. Let A ∈ A. We have (by the last property) that X \A ∈ A. Therefore (by
the third property) we have X = (X \A) ∪A ∈ A.

d) The statement is false: we provide a counterexample. Let X = {1, 2, 3, 4}. Let A =
{∅, {1, 2}, {3, 4}, {1, 2, 3, 4}} and let B = {∅, {1, 3}, {2, 4}, {1, 2, 3, 4}}. It is straight-
forward to check that all the properties of QX hold for A and B, so that QX(A) = 1
and QX(B) = 1. However, consider A∪B = {∅, {1, 2}, {1, 3}, {2, 4}, {3, 4}, {1, 2, 3, 4}}.
While {1, 2}, {1, 3} ∈ A ∪ B, we have {1, 2, 3} = {1, 2} ∪ {1, 3} /∈ A ∪ B. This shows
QX(A ∪ B) = 0, because the third property does not hold.

e) We prove that the statement is true by checking all the properties of QX hold for
A ∩ B.



• For the first property, we have

A ∈ A ∩ B
·⇐⇒ A ∈ A ∧A ∈ B (Definition of ∩)
·⇐⇒ A ∈ P(X) ∧A ∈ P(X) (QX(A) = 1 and QX(B) = 1, Property 1)
·⇐⇒ A ∈ P(X) (A ∧A ≡ A)

• To prove the second property, we remember that from above, we know X ∈ A
and X ∈ B so that X ∈ A ∩ B. This shows the intersection is not empty.

• Let A,B ∈ A ∩ B. Then A,B ∈ A and A,B ∈ B by definition of intersection.
Since QX(A) = 1 and QX(B) = 1, using property 3 we conclude that A∪B ∈ A
and A ∪B ∈ B. By definition of intersection we get A ∪B ∈ A ∩ B. This proves
property 3.

• Let A,B ∈ A ∩ B. Then A,B ∈ A and A,B ∈ B by definition of intersection.
Since QX(A) = 1 and QX(B) = 1, using property 4 we conclude that A∩B ∈ A
and A ∩B ∈ B. By definition of intersection we get A ∩B ∈ A ∩ B. This proves
property 4.

• Let A ∈ A ∩ B. Then A ∈ A and A ∈ B by definition of intersection. Since
QX(A) = 1 and QX(B) = 1, using property 5 we conclude that X \ A ∈ A and
X \ A ∈ B. By definition of intersection we get X \ A ∈ A ∩ B. This proves
property 5.


	Case Distinction with Any Number of Sets
	Element or Subset
	Operations on Sets
	Cardinality
	Proving/Disproving Set Properties
	Relating Two Power Sets
	Special Families of Sets

