Diskrete Mathematik Solution 4

4.1 Case Distinction with Any Number of Sets

We define the predicate *P* by

$$P(k) = 1 \iff (A_1 \vee \cdots \vee A_k) \wedge (A_1 \to B) \wedge \cdots \wedge (A_k \to B) \models B.$$

We want to prove that P(k) = 1 for all $k \ge 1$. We proceed by induction.

Basis Step. The statement P(1) is proven to be true in Lemma 2.7.

Induction Step. Assume that P(k) = 1. We want to show that P(k+1) = 1.

Suppose that a certain truth assignment of the propositional symbols A_1, \ldots, A_{k+1}, B makes the formula

$$(A_1 \vee \cdots \vee A_{k+1}) \wedge (A_1 \to B) \wedge \cdots \wedge (A_{k+1} \to B)$$

true. This means that $(A_i \to B)$ is true for all $i \in \{1, \dots, k+1\}$ and $(A_0 \lor \dots \lor A_{k+1})$ is true. Since $(A_1 \lor \dots \lor A_{k+1})$ is true, then A_i must be true for some $i \in \{1, \dots, k+1\}$. We distinguish two cases:

- Case 1: A_{k+1} is true. Since $A_{k+1} \to B$ is true, then B must be true under the given truth assignment (modus ponens).
- Case 2: A_{k+1} is false. Since $(A_1 \vee \cdots \vee A_{k+1})$ is true, then A_i must be true for some $i \in \{1, \ldots, k\}$. Since by induction hypothesis we know that P(k) = 1, this means that B is true under the given truth assignment.

The case distinction is sound because under a given truth assignment A_{k+1} is true or false. This shows that $P(k) = 1 \Rightarrow P(k+1) = 1$ for all $k \ge 1$. By induction, we conclude that P(k) = 1 for all $k \ge 1$.

4.2 Element or Subset

- i) $A \in B$ and $A \not\subseteq B$ ii) $A \in B$ and $A \subseteq B$
- iii) $A \notin B$ and $A \subseteq B$ iv) $A \in B$ and $A \subseteq B$

4.3 Operations on Sets

The following sets fulfill the conditions:

a) $A = \{\emptyset\}$

For $x = \emptyset$ we have $x \in A$. Also, the empty set is the subset of any other set, so $x \subseteq A$. This is not the only solution. For example, $A = \{7, \{7\}\}$ also fulfills the given condition.

- **b)** $A = \{\emptyset, 1\}$ We have $\mathcal{P}(A) = \{\emptyset, \{\emptyset\}, \{1\}, \{\emptyset, 1\}\}$. Since $1 \notin \mathcal{P}(A)$, it holds that $A \not\subseteq \mathcal{P}(A)$. Also, for $x = \emptyset$ we have $x \in A$ and $x \subseteq \mathcal{P}(A)$ (since the empty set is the subset of any set).
- c) $A = \emptyset$ We have $\emptyset \subseteq \mathcal{P}(A)$. The second requirement is trivially fulfilled, since A has no elements.

4.4 Cardinality

First, notice that $A = \{\emptyset, \{\emptyset\}\}$. With that said, we give the solutions to individual subtasks:

i)
$$A \cup B = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}, |A \cup B| = 4$$

ii)
$$A \cap B = \{\{\emptyset\}\}, |A \cap B| = 1$$

iii)
$$\varnothing \times A = \varnothing$$
, $|\varnothing \times A| = 0$

iv)
$$\{0\} \times \{3,1\} = \{(0,3),(0,1)\}, |\{0\} \times \{3,1\}| = 2$$

v)
$$\{\{1,2\}\} \times \{3\} = \{(\{1,2\},3)\}, |\{\{1,2\}\} \times \{3\}| = 1$$

vi)
$$\mathcal{P}(\{\varnothing\}) = \{\varnothing, \{\varnothing\}\}, |\mathcal{P}(\{\varnothing\})| = 2$$

4.5 Proving/Disproving Set Properties

a) This claim is false. We prove this by providing a counterexample: Let $A=B=C=\{x\}$, i.e. all three sets A,B,C only contain the single element x. We now prove that $x\in \big((A\cup (B\setminus C))\cap (B\cap C)\big)$, which by definition of \varnothing implies $(A\cup (B\setminus C))\cap (B\cap C)\neq\varnothing$.

We have $x \in A$ and

$$x \in A \xrightarrow{\cdot} x \in A \lor x \in (B \setminus C)$$
 [definition of \lor]
 $\stackrel{\cdot}{\Longrightarrow} x \in (A \cup (B \setminus C))$ [definition of \lor]

On the other hand, we have $x \in B$ and $x \in C$, and

$$x \in B \land x \in C \xrightarrow{\cdot} x \in (B \cap C)$$
 [definition of \cap]

Again applying the definition of \cap , it follows $x \in ((A \cup (B \setminus C)) \cap (B \cap C))$.

b) This claim is true. For any *x* it holds

$$\begin{array}{ll} x \in (A \cap (B \setminus C)) & \stackrel{\cdot}{\Longleftrightarrow} x \in A \ \land \ x \in (B \setminus C) & [\text{definition of } \cap] \\ & \stackrel{\cdot}{\Longleftrightarrow} x \in A \ \land \ (x \in B \ \land \ \neg (x \in C)) & [\text{definition of } \setminus] \\ & \stackrel{\cdot}{\Longleftrightarrow} (x \in A \ \land \ x \in B) \ \land \ \neg (x \in C) & [\text{associativity of } \land] \end{array}$$

On the other hand, we have

$$x \in \big((A \cap B) \setminus ((A \cap B) \cap C) \big)$$

$$\Leftrightarrow x \in (A \cap B) \land \neg \big(x \in ((A \cap B) \cap C) \big) \qquad [\text{def. of } \setminus]$$

$$\Leftrightarrow \big(x \in A \land x \in B \big) \land \neg \big((x \in A \land x \in B) \land x \in C \big) \qquad [\text{def. of } \cap]$$

$$\Leftrightarrow \big((x \in A \land x \in B) \land (\neg (x \in A \land x \in B) \lor \neg (x \in C) \big) \qquad [\neg (F \land G) \equiv \neg F \lor \neg G]$$

$$\Leftrightarrow \big((x \in A \land x \in B) \land \neg (x \in A \land x \in B) \big) \qquad [F \land (G \lor H) \land (x \in A \land x \in B) \land \neg (x \in C) \big) \qquad [F \land \neg F \equiv \bot]$$

$$\Leftrightarrow \big((x \in A \land x \in B) \land \neg (x \in C) \big) \lor \bot \qquad [\text{commutativity of } \lor]$$

$$\Leftrightarrow \big((x \in A \land x \in B) \land \neg (x \in C) \big) \lor \bot \qquad [F \lor \bot \equiv F]$$

Combining the two results, we proved the claim.

c) This claim is true, which we prove in the following by showing that two special sets must always lie in $\mathcal{P}(\mathcal{P}(A) \times \mathcal{P}(B))$. For any sets A and B, by Lemma 3.6 it holds $\varnothing \subseteq A$ and $\varnothing \subseteq B$. Hence, by the definition of the power set \mathcal{P} , we get

$$\varnothing \in \mathcal{P}(A) \text{ and } \varnothing \in \mathcal{P}(B).$$
 (1)

Now by the definition of the Cartesian product we have $(\varnothing,\varnothing) \in \mathcal{P}(A) \times \mathcal{P}(B)$. This, by the definition of subsets, implies $\{(\varnothing,\varnothing)\} \subseteq \mathcal{P}(A) \times \mathcal{P}(B)$. Again applying the definition of power sets, we get $\{(\varnothing,\varnothing)\} \in \mathcal{P}(\mathcal{P}(A) \times \mathcal{P}(B))$.

Now, applying Lemma 3.6 on the set $\mathcal{P}(A) \times \mathcal{P}(B)$, we also have $\emptyset \subseteq \mathcal{P}(A) \times \mathcal{P}(B)$. Thus, by the definition of power sets, it must hold

$$\varnothing \in \mathcal{P}(\mathcal{P}(A) \times \mathcal{P}(B)).$$
 (2)

Combining Equation (1) and Equation (2) we see that for any sets A and B there are at least two distinct element in $\mathcal{P}(\mathcal{P}(A) \times \mathcal{P}(B))$, which (using the definition of cardinality of sets) immediately implies the claim, i.e. $|\mathcal{P}(\mathcal{P}(A) \times \mathcal{P}(B))| \geq 2$.

4.6 Relating Two Power Sets

a) For any *C*, we have

```
C \in \mathcal{P}(A \cap B)
                    \stackrel{\cdot}{\iff} C \subseteq A \cap B
                                                                                                                    (definition of \mathcal{P})
                    \stackrel{\cdot}{\iff} \forall c \ (c \in C \to c \in A \cap B)
                                                                                                                    (definition of \subseteq)
                    \stackrel{\cdot}{\iff} \forall c \ (c \in C \rightarrow (c \in A \land c \in B))
                                                                                                                    (definition of \cap)
                    \Leftrightarrow \forall c \ ((c \in C \to c \in A) \land (c \in C \to c \in B))
                                                                                                                    (*)
                    \Leftrightarrow \forall c \ (c \in C \to c \in A) \land \forall c \ (c \in C \to c \in B)
                                                                                                                   (**)
                    \stackrel{\cdot}{\iff} C \subseteq A \land C \subseteq B
                                                                                                                    (definition of \subseteq)
                    \stackrel{\cdot}{\iff} C \in \mathcal{P}(A) \land C \in \mathcal{P}(B)
                                                                                                                    (definition of \mathcal{P})
                    \stackrel{\cdot}{\iff} C \in \mathcal{P}(A) \cap \mathcal{P}(B)
                                                                                                                    (definition of \cap)
```

- (*) We use the fact that for any formulas A_1 , A_2 and A_3 , we have $A_1 \to (A_2 \land A_3) \equiv \neg A_1 \lor (A_2 \land A_3) \equiv (\neg A_1 \lor A_2) \land (\neg A_1 \lor A_3) \equiv (A_1 \to A_2) \land (A_1 \to A_3)$. (This follows from Lemma 2.1.)
- (**) We use the fact that $\forall x P(x) \land \forall x Q(x) \equiv \forall x (P(x) \land Q(x))$ for any predicates P and Q (see Chapter 2.4.8 of the lecture notes).
- **b)** To prove that the statement is false, we show a counterexample. Let $A = \{1\}$ and $B = \{2\}$. We have $\mathcal{P}(A) \cup \mathcal{P}(B) = \{\emptyset, \{1\}\} \cup \{\emptyset, \{2\}\} = \{\emptyset, \{1\}, \{2\}\}\}$. On the other hand, $\mathcal{P}(A \cup B) = \mathcal{P}(\{1, 2\}) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$.
- c) We will prove the implication in both directions separately.
 - $A\subseteq B\implies \mathcal{P}(A)\subseteq \mathcal{P}(B)$: Let B be any set and let A be any subset of B. What we have to show is that each element of $\mathcal{P}(A)$ is also an element of $\mathcal{P}(B)$. Let S be any element of $\mathcal{P}(A)$. Then, by Definition 3.7, $S\subseteq A$. By the assumption that $A\subseteq B$ and by the transitivity of \subseteq , it follows that $S\subseteq B$. This means that S is an element of $\mathcal{P}(B)$.
 - $\mathcal{P}(A) \subseteq \mathcal{P}(B) \implies A \subseteq B$: Let A, B be any sets and assume that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. Since $A \in \mathcal{P}(A)$ (which holds for any set A) and, by assumption, $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, we have that $A \in \mathcal{P}(B)$. By Definition 3.7, this means that $A \subseteq B$.

4.7 Special Families of Sets

- a) We prove that the statement is true by checking that all the required properties hold for $\mathcal{A} = \mathcal{P}(X)$.
 - $\mathcal{P}(X) \subseteq \mathcal{P}(X)$ trivially holds.
 - Since $X \neq \emptyset$ then $\mathcal{P}(X) \neq \emptyset$.

• Let $A, B \in \mathcal{P}(X)$. We have

$$A \cup B \in \mathcal{P}(X)$$

$$\iff A \cup B \subseteq X \qquad \qquad \text{(Definition of } \mathcal{P})$$

$$\iff \forall x \ (x \in A \cup B \to x \in X) \qquad \qquad \text{(Definition of } \subseteq)$$

$$\iff \forall x \ ((x \in A \lor x \in B) \to x \in X) \qquad \qquad \text{(Definition of } \cup)$$

$$\iff \forall x \ ((x \in A \to x \in X) \land (x \in B \to x \in X)) \qquad (*)$$

$$\iff \forall x \ (x \in A \to x \in X) \land \forall x \ (x \in B \to x \in X) \qquad (**)$$

$$\iff A \subseteq X \land B \subseteq X \qquad \qquad \text{(Definition of } \subseteq \text{twice)}$$

$$\iff \top \qquad \qquad \text{(By Assumption)}$$

- (*) We use the fact that $(F \vee G) \to H \equiv \neg (F \vee G) \vee H \equiv (\neg F \wedge \neg G) \vee H \equiv (\neg F \vee H) \wedge (\neg G \vee H) \equiv (F \to H) \wedge (G \to H)$. See Lemma 2.1.
- (**) We use the fact that $\forall x P(x) \land \forall x Q(x) \equiv \forall x (P(x) \land Q(x))$ for any predicates P and Q (see Chapter 2.4.8 of the lecture notes).
- Let $A, B \in \mathcal{P}(X)$, that is $A, B \subseteq X$. We have

$$x \in A \cap B \iff x \in A \land x \in B \quad \text{(Definition of } \cap \text{)}$$

$$\implies x \in X \land x \in X \quad \text{(Definition of } \subseteq \text{twice)}$$

$$\implies x \in X \qquad (A \land A \equiv A)$$

• Let $A \in \mathcal{P}(X)$, that is $A \subseteq X$. We have

$$x \in X \setminus A \iff x \in X \land x \notin A \implies x \in X$$

which shows that $X \setminus A \subseteq X$, that is $X \setminus A \in \mathcal{P}(X)$.

- **b)** The statement is false. Notice that $X \in \{X\}$, but $X \setminus X = \emptyset \notin \{X\}$. Therefore, the last property does not hold, and $Q_X(\{X\}) = 0$.
- c) The statement is true. Suppose that $Q_X(\mathcal{A})=1$. This means (by the second property) that $\mathcal{A}\neq\varnothing$. Let $A\in\mathcal{A}$. We have (by the last property) that $X\setminus A\in\mathcal{A}$. Therefore (by the third property) we have $X=(X\setminus A)\cup A\in\mathcal{A}$.
- d) The statement is false: we provide a counterexample. Let $X = \{1, 2, 3, 4\}$. Let $\mathcal{A} = \{\varnothing, \{1, 2\}, \{3, 4\}, \{1, 2, 3, 4\}\}$ and let $\mathcal{B} = \{\varnothing, \{1, 3\}, \{2, 4\}, \{1, 2, 3, 4\}\}$. It is straightforward to check that all the properties of Q_X hold for \mathcal{A} and \mathcal{B} , so that $Q_X(\mathcal{A}) = 1$ and $Q_X(\mathcal{B}) = 1$. However, consider $\mathcal{A} \cup \mathcal{B} = \{\varnothing, \{1, 2\}, \{1, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2, 3, 4\}\}$. While $\{1, 2\}, \{1, 3\} \in \mathcal{A} \cup \mathcal{B}$, we have $\{1, 2, 3\} = \{1, 2\} \cup \{1, 3\} \notin \mathcal{A} \cup \mathcal{B}$. This shows $Q_X(\mathcal{A} \cup \mathcal{B}) = 0$, because the third property does not hold.
- e) We prove that the statement is true by checking all the properties of Q_X hold for $A \cap B$.

• For the first property, we have

$$\begin{array}{ll} A\in\mathcal{A}\cap\mathcal{B}\\ & \stackrel{\cdot}{\Longleftrightarrow} A\in\mathcal{A}\wedge A\in\mathcal{B}\\ & \stackrel{\cdot}{\Longleftrightarrow} A\in\mathcal{P}(X)\wedge A\in\mathcal{P}(X) & (Q_X(\mathcal{A})=1 \text{ and } Q_X(\mathcal{B})=1, \text{ Property 1})\\ & \stackrel{\cdot}{\Longleftrightarrow} A\in\mathcal{P}(X) & (A\wedge A\equiv A) \end{array}$$

- To prove the second property, we remember that from above, we know $X \in \mathcal{A}$ and $X \in \mathcal{B}$ so that $X \in \mathcal{A} \cap \mathcal{B}$. This shows the intersection is not empty.
- Let $A, B \in \mathcal{A} \cap \mathcal{B}$. Then $A, B \in \mathcal{A}$ and $A, B \in \mathcal{B}$ by definition of intersection. Since $Q_X(\mathcal{A}) = 1$ and $Q_X(\mathcal{B}) = 1$, using property 3 we conclude that $A \cup B \in \mathcal{A}$ and $A \cup B \in \mathcal{B}$. By definition of intersection we get $A \cup B \in \mathcal{A} \cap \mathcal{B}$. This proves property 3.
- Let $A, B \in \mathcal{A} \cap \mathcal{B}$. Then $A, B \in \mathcal{A}$ and $A, B \in \mathcal{B}$ by definition of intersection. Since $Q_X(\mathcal{A}) = 1$ and $Q_X(\mathcal{B}) = 1$, using property 4 we conclude that $A \cap B \in \mathcal{A}$ and $A \cap B \in \mathcal{B}$. By definition of intersection we get $A \cap B \in \mathcal{A} \cap \mathcal{B}$. This proves property 4.
- Let $A \in \mathcal{A} \cap \mathcal{B}$. Then $A \in \mathcal{A}$ and $A \in \mathcal{B}$ by definition of intersection. Since $Q_X(\mathcal{A}) = 1$ and $Q_X(\mathcal{B}) = 1$, using property 5 we conclude that $X \setminus A \in \mathcal{A}$ and $X \setminus A \in \mathcal{B}$. By definition of intersection we get $X \setminus A \in \mathcal{A} \cap \mathcal{B}$. This proves property 5.