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4.1 Case Distinction with Any Number of Sets
We define the predicate P by

Pk)y=1 < (A1V---VA)AN(A1 = B)AN---N (A — B) E B.

We want to prove that P(k) = 1 for all £ > 1. We proceed by induction.

Basis Step. The statement P(1) is proven to be true in Lemma 2.7.

Induction Step. Assume that P(k) = 1. We want to show that P(k + 1) = 1.

Suppose that a certain truth assignment of the propositional symbols A4, ..., Ai4+1, B makes

the formula
(A1V-~-\/Ak+1)/\(141 —>B>/\---/\(Ak+1 —)B)

true. This means that (4; — B)istrueforalli € {1,...,k+ 1} and (Ag V ---V Ag41) is
true. Since (A1 V -+ V Agq) is true, then A; must be true for some i € {1,...,k + 1}. We
distinguish two cases:

® Case 1: Aj4q is true. Since Ay — B is true, then B must be true under the given
truth assignment (modus ponens).

e Case 2: Ay is false. Since (A1 V -+ V Agy1) is true, then A; must be true for some
i € {1,...,k}. Since by induction hypothesis we know that P(k) = 1, this means that
B is true under the given truth assignment.

The case distinction is sound because under a given truth assignment Ay ; is true or false.
This shows that P(k) = 1 = P(k + 1) = 1 for all ¥ > 1. By induction, we conclude that
P(k)=1forall k > 1.

4.2 Element or Subset
i) AeBand A¢Z B i) Ae€eBandACB
iii) A¢Band ACB iv)] AcBand ACB

4.3 Operations on Sets
The following sets fulfill the conditions:
a) A={o}
For x = @ wehave z € A. Also, the empty set is the subset of any other set, so x C A.
This is not the only solution. For example, A = {7, {7}} also fulfills the given condition.



b) A={o,1}
We have P(A) = {@,{2},{1},{,1}}. Since 1 ¢ P(A), it holds that A Z P(A). Also,
for z = @ we have z € A and = C P(A) (since the empty set is the subset of any set).

0 A=0
We have @ C P(A). The second requirement is trivially fulfilled, since A has no
elements.

4.4 Cardinality

First, notice that A = {@, {@}}. With that said, we give the solutions to individual sub-
tasks:

) AUB = {2,{2},{{2}}.{2,{2}}},|AUB| =4
i) ANB={{z}},|AnB|=1

iii) gx A=02,|gx Al =0

iv) {0} x {3,1} ={(0,3),(0,1)}, [{0} x {3,1}| =2
v) {{1,2}} x {3} = {({1,2},3)}, [{{1,2}} x {3} = 1
vi) P({2}) = {2,{a}}, [P{2})] = 2

4.5 Proving/Disproving Set Properties

a) This claim is false. We prove this by providing a counterexample: Let A = B = C =
{z}, i.e. all three sets A, B, C only contain the single element . We now prove that
z € ((AU(B\C))N(BNC)), which by definition of & implies (AU(B\C))N(BNC) #
d.
We have » € A and
reA=xzecAVze(B\O) [definition of V]

— z€ (AU(B\C)) [definition of U]
On the other hand, we have x € Band z € C, and
re€BANzeC=ze(BNCO) [definition of N]

Again applying the definition of N, it follows z € ((AU (B\ C)) N (BN C)).

b) This claim is true. For any z it holds
re(AN(B\CO)) <=z AANxze(B\CO) [definition of N]
< zeAAN(xeB A ~(xel)) [definition of \]
< (xeANzeB) AN (rel) [ associativity of A



On the other hand, we have

ze((ANB)\(ANnB)NC))
€ (

< z€(ANB) A =(z€((ANB)NC)) [def. of \]
< (r€ANzeEB) A -(zeANzeEB) AzeC) [def. of N]
< @cANzeB) AN (n(z€AANzeB)V ~(ze€C)) [H(FAG)=-FV-G]
< ((teAANz€eB) A ~(z€A AN z€EB)) [FA(GV H)
V(€A N azeB) A ~(zel)) =(FAG)V(FAH)]
< 1V ((zeAd NzeB) A ~(ze0)) [FA-F = 1]
< ((zeAANzeB) A-(zeC)) VL [commutativity of V]
< (xeANzeB)AN-(xel) [FV1=F|

Combining the two results, we proved the claim.

¢) This claim is true, which we prove in the following by showing that two special sets
must always lie in P(P(A) x P(B)). For any sets A and B, by Lemma 3.6 it holds
@ C Aand @ C B. Hence, by the definition of the power set P, we get

geP(A) and o € P(B). (1)

Now by the definition of the Cartesian product we have (&, @) € P(A) x P(B). This,
by the definition of subsets, implies {(&, @)} C P(A) x P(B). Again applying the
definition of power sets, we get {(&, @)} € P(P(A) x P(B)).

Now, applying Lemma 3.6 on the set P(A) x P(B), we also have @ C P(A) x P(B).
Thus, by the definition of power sets, it must hold

@ e P(P(A) x P(B)). (2)

Combining Equation (1) and Equation (2) we see that for any sets A and B there
are at least two distinct element in P(P(A) x P(B)), which (using the definition of
cardinality of sets) immediately implies the claim, i.e. |P(P(A4) x P(B))| > 2.



4.6 Relating Two Power Sets

a) For any C, we have

CeP(ANB)

[ O R S

CCANB

Ve(ce C—ce ANB)
Ve(ce C— (ce AANce B))
Ve((ceC—ceA)A(ceC —ce B))
Ve(ceC—ce A)AVe(ce C —ce B)

CCANCCB

CeP(ANCeP(B)

C € P(A)NP(B)

definition of P)

definition of C)
definition of N)

.

ok )

definition of C)
definition of P)

~ o~ o~ o~ o~ o~ o~ o~

definition of N)

(¥) We use the fact that for any formulas A;, A; and A3, we have A — (A2 A A3z) =
—-A1V (AQ A Ag) = (ﬂAl vV Ag) A (—|A1 V A3) = (A1 — Ag) A (Al — A3). (This follows
from Lemma 2.1.)
(%) We use the fact that VzP(x) A VzQ(x) = Va(P(x) A Q(x)) for any predicates P

and @ (see Chapter 2.4.8 of the lecture notes).

b) To prove that the statement is false, we show a counterexample. Let A = {1} and
B = {2}. Wehave P(A) UP(B) = {@,{1}} U{@,{2}} = {2, {1}, {2}}. On the other

hand, P(AU B) = P({1,2}) = {@, {1}, {2}, {1,2}}.

c) We will prove the implication in both directions separately.

ACB = P(A) CP(B): Let B be any set and let A be any subset of B. What we
have to show is that each element of P(A) is also an element of P(B). Let S be
any element of P(A). Then, by Definition 3.7, S C A. By the assumption that
A C B and by the transitivity of C, it follows that S C B. This means that S is
an element of P(B).

P(A) CP(B) = AC B: Let A, B be any sets and assume that P(A)
Since A € P(A) (which holds for any set A) and, by assumption, P(A)

-
c

we have that A € P(B). By Definition 3.7, this means that A C B.

4.7 Special Families of Sets

P
P

(B)

(

B
B

)
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a) We prove that the statement is true by checking that all the required properties hold

for A =P(X

).

e P(X) C P(X) trivially holds.
e Since X # @ then P(X) # @.



e Let A,B € P(X). We have

AUB e P(X)
<<= AUBCX (Definition of P)
<= Vz(re AUB -z € X) (Definition of C)
<= Vr((reAVazeB) sz eX) (Definition of U)

—Vr((zreAdA—zeX)AN(zeB—xeX)) (%

= Vr(zeA—zeX)AVe(z € B—z e X) (#x)
< ACXABCX (Definition of C twice)
T (By Assumption)

(x) We use the fact that (FVG) - H=-(FVG)VH = (-FAN-G)V H =
(-FVH)\N(-GVH)=(F— H)N(G— H).See Lemma 2.1.

(+x) We use the fact that Vo P(z) AV2Q(z) = Va(P(x) A Q(x)) for any predicates
P and @ (see Chapter 2.4.8 of the lecture notes).

e Let A,B € P(X), thatis A, B C X. We have

r€ANB <z € ANz € B (Definition of N)
—z€ XAz € X (Definition of C twice)
—zeX (ANA=A)

e Let A€ P(X), thatis A C X. We have

reX\A<=reXNr¢gA=2eX
which shows that X \ A C X, thatis X \ A € P(X).

b) The statement is false. Notice that X € {X}, but X \ X = @ ¢ {X}. Therefore, the
last property does not hold, and Qx ({X}) = 0.

¢) The statement is true. Suppose that Q x (A) = 1. This means (by the second property)
that A # @. Let A € A. We have (by the last property) that X \ A € A. Therefore (by
the third property) we have X = (X \ A)U A € A.

d) The statement is false: we provide a counterexample. Let X = {1,2,3,4}. Let A =
{2,{1,2},{3,4},{1,2,3,4}} and let B = {@,{1,3},{2,4},{1,2,3,4}}. It is straight-
forward to check that all the properties of () x hold for A and B, so that Qx(A) =1
and Qx(B) = 1. However, consider AUB = {&,{1,2},{1,3},{2,4},{3,4},{1,2,3,4}}.
While {1,2},{1,3} € AU B, we have {1,2,3} = {1,2} U{1,3} ¢ AU B. This shows
Qx (AU B) =0, because the third property does not hold.

e) We prove that the statement is true by checking all the properties of @ x hold for
ANB.



For the first property, we have

Ae ANB
< Ac ANAeB (Definition of N)
<= AePX)NAeP(X) (Qx(A)=1and Qx(B) =1, Property 1)
<— A e P(X) (ANA=A)

To prove the second property, we remember that from above, we know X € A
and X € Bso that X € AN B. This shows the intersection is not empty.

Let A,B € ANB. Then A,B € Aand A, B € B by definition of intersection.
Since Q@ x(A) = 1 and Qx(B) = 1, using property 3 we conclude that AUB € A
and AU B € B. By definition of intersection we get AU B € AN B. This proves
property 3.

Let A,B € ANB. Then A,B € Aand A, B € B by definition of intersection.
Since Qx(A) = 1 and Qx(B) = 1, using property 4 we conclude that ANB € A
and AN B € B. By definition of intersection we get AN B € AN B. This proves
property 4.

Let A€ ANB. Then A € Aand A € B by definition of intersection. Since
Qx(A) =1and Qx(B) = 1, using property 5 we conclude that X \ A € A and
X \ A € B. By definition of intersection we get X \ A € AN B. This proves

property 5.
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