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Solution 3

Part 1: Predicate Logic

3.1 Expressing Relationship of Humans in Predicate Logic
a) Ju Jv (par(x,u) A par(u,v) A par(v,y)).
b) Ju Fv Jw (par(u,v) A par(u, w) A par(v, x) A par(w,y) A —par(v,y) A —par(w,z)).

3.2 From Natural Language to a Formula
i) VaVyVz ((z|y A z|2) — (z](y+ 2))).

ii) VzVy ((prime(z) A y|z) — (y==2z V y=1)).
iii) Vz (By (z-y=1)) +— (z=1)).

iv) VaVyVz (prime(z) — ((z|(y-2)) «— (z|y V z]2))).

3.3 Winning Strategy

a) The numbers announced by Alice cannot depend on Bob’s choice for b; and b,. There-
fore, the statement can be described by the following formula:
Ja13az¥bi ¥y (ay + (az + by)P2 T =1).

The above statement is false, because for each tuple (a1, as2), there exists a tuple
(b1,b2) :== (2 — ag — ay,0) such that

a1+ (ag + b)) =) + (a2 +2—ag —ay) = 2.

Therefore, Alice does not have a winning strategy.

b) In this case, Alice’s choice for as can depend on b;. Therefore, the statement can be
described by the following formula:

Ja1¥bi3as¥hy (ay + (az + by)P2 T =1).

This statement is true. A possible winning strategy for Alice is to choose a; = 1 and
as = —by. For such choice, we have

ay + (az + by)P?H = 14+ P2l =1,



Part 2: Proof Patterns

3.4 Indirect Proof of an Implication (2.6.3)

a)

b)

Assume that n is even. Then, n = 2k for some k € N. We have therefore n? =

2k - 2k = 2 - 2k2. Hence, n? is even.

n-n =

Detailed solution:

Statement S: n? is odd.

Statement 7": n is odd.

Indirect proof:

n is not odd.

— n 1s even.

= n = 2k for some k € N.

= n-n = 2k - 2k for some k € N.

= n-n=2-2k?for some k € N.

= n-n =2l forsomel € N.

= n? =2l forsomel € N.

= n?is even.

Assume that n is even. We show that in such case 42" — 1 is not a prime. To this
end, notice that, since n is even, there must exist a natural number k£ > 0, such that
n = 2k. It follows that 42" — 1 = 422F — 1 = (42% + 1)(42* — 1). Therefore, we found
two non-trivial divisors of 42" — 1, namely (42* + 1) and (42* — 1) (they are greater
than 1, because k£ > 0). Thus, 42" — 1 cannot be a prime.

Detailed solution:

We consider two statements S and 7. We have to show that S = T is true. To this end, we use an
indirect direct proof, that is, we assume that 7" is false and show that, under this assumption S, must
also be false.

Statement S: 42" — 1 is a prime.

Statement 7 n is odd.

Indirect proof:

n is not odd.

= nis even.

== There exists a natural number, call it k, such that k > 0 and n = 2k.

= We have 42" — 1 = 42?% — 1 = (42" 4+ 1)(42* — 1) for k > 0.

== There exist two non-trivial divisors of 42" — 1, namely (42* + 1) and (42" — 1).

= 42" — 1l is not a prime.

3.5 Case Distinction (2.6.5)

a)

Let n be any natural number greater or equal 0. Let n = 3%k + ¢, where 0 < ¢ < 2 and
k € N. We have

n®+2n+6=(3k+c)* +2(3k+c) +6
= 3 + 9Pk + 27ck? + 2¢ + 27k> + 6k + 6.

Each summand is divisible by 3, except the term 3 + 2¢. Hence, we only need to
show that ¢® + 2c is divisible by 3 for 0 < ¢ < 2.

Case ¢ = 0: ¢3 + 2¢ = 0, which is divisible by 3.



Case c = 1: ¢ + 2¢ = 3, which is divisible by 3.
Case ¢ = 2: ¢ + 2c = 12, which is divisible by 3.

Since the above cases cover all possibilities for ¢, we can conclude the proof.

b) In the following, we let R3(x) denote the remainder of the division of = by 3 (for
example, R3(5) = 2). For any prime number p, we can distinguish the following
three cases:

p=2: If p =2, then p? + 2 = 6 is not a prime. Thus, the claim holds for p = 2.

p=3: If p = 3, then p?> + 2 = 11 is a prime. However, we now have p® + 2 = 29,
which is also a prime. Thus, the claim also holds for p = 3.

p > 3: If p > 3 is a prime, then 3 cannot divide p. Therefore, we have R3(p) € {1, 2}.
Thus, it holds that

R3(p?) = R3(Rs(p) - R3(p)) = 1.
It follows that

R3(p? +2) = R3(R3(p?) + R3(2)) = R3(1+2) =0

Therefore, p? + 2 must be divisible by 3 and so it is not a prime. Thus, the claim
holds also for p > 3.

Since the above cases cover all prime numbers, the claim holds.

3.6 Proof by Contradiction (2.6.6)

a) Let z be any irrational number and let » be any rational number. Assume that s =
z + r is rational. To reach a contradiction, we show that in such case z must be
rational. Indeed, we have ©x = s — r. Therefore, we have that x is a difference of two
rational numbers and thus, by the fact from the hint, it must also be rational. This is
a contradiction with the assumption that x is irrational.

Detailed solution:
Consider a statement S. To show that S is true, we will state a false statement 7', and show that if S is
false, then T is true.

Fix any irrational number z and any rational number 7.
Statement S: The sum x + r is irrational.

Statement 7': x is rational.

Proof by contradiction:

We show that if S is false, then T is true:

S is false.

= Itis not true that the sum z + r is irrational.

= The sum s = x + r is rational.

= z = s — 7, where s and r are some rational numbers.
= 1z is rational. (by the fact from the hint)

= T is true.

The statement 7' is trivially false.



b)

Assume for contradiction that 2% is rational for some n > 2. rlfhat is, assume that
there exist two positive integers, call them p and ¢, such that 2» = %. This implies

that 2 = Iq%. Hence, we have ¢ + ¢" = p", which is a contradiction with Fermat’s
Last Theorem.

The contradiction with Fermat’s Last Theorem follows from the counterexample ¢" + ¢" = p".

Detailed solution:

Fix any integer n > 2.

Statement S: 2+ is irrational.

Statement T': There exist positive integers p, g such that ¢" + ¢™ = p".
Proof by contradiction:

We show that if S is false, then T is true:

S ‘is false. )

= Itlis not true that 2= is irrational.

— 2= isrational.

= There exist positive integers p and ¢ such that 2% = B

= There exist positive integers p and ¢ such that 2 = Z—:.

= There exist positive integers p and ¢ such that ¢" + ¢" = p".
= T is true.

The statement 7’ is false, since it is a counterexample to Fermat’s Last Theorem.

3.7 New Proof Patterns

a)

b)

The proof pattern described corresponds to the following statement about formulas:
(_‘A — (Bl V Bg)) VAN (—\Bl V —\Bg) ): A.

We show that the proof pattern is not sound by showing that the statement is false.
Consider a truth assignment for which A is false, B is true, and By is false. Comput-
ing the function table of (—A — (B; V Bg)) A (=B V = By) shows that the formula is
true under this truth assignment. Since A is false, the logical consequence does not
hold.

The proof pattern described corresponds to the following statement about formulas:

(AA-B) > C)A=C | A - B.

We show that the proof pattern is sound by showing that the statement is true. To do
so, we compute the function tables of the formulas involved.

b
W
Q

(AN-B) = C)AN—-C | A= B
1

— == =0 O OO
=0 O == OO
_ O = O OO
O = O OO = O =
—_ =0 O = = =




The table shows that if under a certain truth assignment of the propositional symbols
A, B, and C the formula ((A A =B) — C) A =C' is true, then the formula A — B is
also true. Therefore, the logical consequence holds, and the proof pattern is sound.

3.8 Proof by Contradiction

We define the statement S as
S: (n|m and n|(m+1)) = n=1

and the statement 7" as
T: n=1landn # 1.

It is obvious that T is false for any natural number n.

Assume S is false.

= Itis not true that (n|m and n|(m+1)) = n=1).

[Follows by definition of S']

= It must hold thatn|m and n|(m+1)and n # 1.

[Follows since =(A — B) = ~(=AV B) = AA-B]

— There must exist integers k and ¢ such thatk-n=m and ¢-n = (m+1)andn # 1.
[Follows by definition of divisibility.]

—> There must exist integers k and ¢ such that (¢ — k) -n =1 and n # 1.
[Follows since (¢ — k) -n=¢-n—k-n=m+1—m=1]

= Itmusthold n = 1and n # 1.

[Follows from ¢ — k € N and [3.2)[iii)}]

= T is true.

[Follows from definition of 7'

Hence, we arrived at a contradiction and can conclude that S must be true.
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