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Part 1: Predicate Logic

3.1 Expressing Relationship of Humans in Predicate Logic

a) ∃u ∃v (par(x, u) ∧ par(u, v) ∧ par(v, y)).
b) ∃u ∃v ∃w (par(u, v) ∧ par(u,w) ∧ par(v, x) ∧ par(w, y) ∧ ¬par(v, y) ∧ ¬par(w, x)).

3.2 From Natural Language to a Formula

i) ∀x ∀y ∀z
(
(x | y ∧ x | z) −→ (x | (y + z))

)
.

ii) ∀x ∀y
(
(prime(x) ∧ y |x) −→ (y = x ∨ y = 1)

)
.

iii) ∀x
(
(∃y (x · y = 1)) ←→ (x = 1)

)
.

iv) ∀x ∀y ∀z
(
prime(x) −→

(
(x | (y · z)) ←→ (x | y ∨ x | z)

))
.

3.3 Winning Strategy

a) The numbers announced by Alice cannot depend on Bob’s choice for b1 and b2. There-
fore, the statement can be described by the following formula:

∃a1∃a2∀b1∀b2
(
a1 + (a2 + b1)

|b2|+1 = 1
)
.

The above statement is false, because for each tuple (a1, a2), there exists a tuple
(b1, b2) := (2− a2 − a1, 0) such that

a1 + (a2 + b1)
|b2|+1 = a1 + (a2 + 2− a2 − a1) = 2.

Therefore, Alice does not have a winning strategy.

b) In this case, Alice’s choice for a2 can depend on b1. Therefore, the statement can be
described by the following formula:

∃a1∀b1∃a2∀b2
(
a1 + (a2 + b1)

|b2|+1 = 1
)
.

This statement is true. A possible winning strategy for Alice is to choose a1 = 1 and
a2 = −b1. For such choice, we have

a1 + (a2 + b1)
|b2|+1 = 1 + 0|b2|+1 = 1.



Part 2: Proof Patterns

3.4 Indirect Proof of an Implication (2.6.3)

a) Assume that n is even. Then, n = 2k for some k ∈ N. We have therefore n2 = n · n =
2k · 2k = 2 · 2k2. Hence, n2 is even.

Detailed solution:
Statement S: n2 is odd.
Statement T : n is odd.
Indirect proof:
n is not odd.

·
=⇒ n is even.

·
=⇒ n = 2k for some k ∈ N.

·
=⇒ n · n = 2k · 2k for some k ∈ N.

·
=⇒ n · n = 2 · 2k2 for some k ∈ N.

·
=⇒ n · n = 2l for some l ∈ N.

·
=⇒ n2 = 2l for some l ∈ N.

·
=⇒ n2 is even.

b) Assume that n is even. We show that in such case 42n − 1 is not a prime. To this
end, notice that, since n is even, there must exist a natural number k > 0, such that
n = 2k. It follows that 42n − 1 = 422k − 1 = (42k + 1)(42k − 1). Therefore, we found
two non-trivial divisors of 42n − 1, namely (42k + 1) and (42k − 1) (they are greater
than 1, because k > 0). Thus, 42n − 1 cannot be a prime.

Detailed solution:
We consider two statements S and T . We have to show that S =⇒ T is true. To this end, we use an
indirect direct proof, that is, we assume that T is false and show that, under this assumption S, must
also be false.
Statement S: 42n − 1 is a prime.
Statement T : n is odd.
Indirect proof:
n is not odd.

·
=⇒ n is even.

·
=⇒ There exists a natural number, call it k, such that k > 0 and n = 2k.

·
=⇒ We have 42n − 1 = 422k − 1 = (42k + 1)(42k − 1) for k > 0.

·
=⇒ There exist two non-trivial divisors of 42n − 1, namely (42k + 1) and (42k − 1).

·
=⇒ 42n − 1 is not a prime.

3.5 Case Distinction (2.6.5)

a) Let n be any natural number greater or equal 0. Let n = 3k + c, where 0 ≤ c ≤ 2 and
k ∈ N. We have

n3 + 2n+ 6 = (3k + c)3 + 2(3k + c) + 6

= c3 + 9c2k + 27ck2 + 2c+ 27k3 + 6k + 6.

Each summand is divisible by 3, except the term c3 + 2c. Hence, we only need to
show that c3 + 2c is divisible by 3 for 0 ≤ c ≤ 2.

Case c = 0: c3 + 2c = 0, which is divisible by 3.



Case c = 1: c3 + 2c = 3, which is divisible by 3.

Case c = 2: c3 + 2c = 12, which is divisible by 3.

Since the above cases cover all possibilities for c, we can conclude the proof.

b) In the following, we let R3(x) denote the remainder of the division of x by 3 (for
example, R3(5) = 2). For any prime number p, we can distinguish the following
three cases:

p = 2: If p = 2, then p2 + 2 = 6 is not a prime. Thus, the claim holds for p = 2.

p = 3: If p = 3, then p2 + 2 = 11 is a prime. However, we now have p3 + 2 = 29,
which is also a prime. Thus, the claim also holds for p = 3.

p > 3: If p > 3 is a prime, then 3 cannot divide p. Therefore, we have R3(p) ∈ {1, 2}.
Thus, it holds that

R3(p
2) = R3(R3(p) ·R3(p)) = 1.

It follows that

R3(p
2 + 2) = R3(R3(p

2) +R3(2)) = R3(1 + 2) = 0

Therefore, p2 + 2 must be divisible by 3 and so it is not a prime. Thus, the claim
holds also for p > 3.

Since the above cases cover all prime numbers, the claim holds.

3.6 Proof by Contradiction (2.6.6)

a) Let x be any irrational number and let r be any rational number. Assume that s =
x + r is rational. To reach a contradiction, we show that in such case x must be
rational. Indeed, we have x = s− r. Therefore, we have that x is a difference of two
rational numbers and thus, by the fact from the hint, it must also be rational. This is
a contradiction with the assumption that x is irrational.

Detailed solution:
Consider a statement S. To show that S is true, we will state a false statement T , and show that if S is
false, then T is true.
Fix any irrational number x and any rational number r.
Statement S: The sum x+ r is irrational.
Statement T : x is rational.
Proof by contradiction:
We show that if S is false, then T is true:

S is false.
·

=⇒ It is not true that the sum x+ r is irrational.
·

=⇒ The sum s = x+ r is rational.
·

=⇒ x = s− r, where s and r are some rational numbers.
·

=⇒ x is rational. (by the fact from the hint)
·

=⇒ T is true.

The statement T is trivially false.



b) Assume for contradiction that 2
1
n is rational for some n > 2. That is, assume that

there exist two positive integers, call them p and q, such that 2
1
n = p

q . This implies
that 2 = pn

qn . Hence, we have qn + qn = pn, which is a contradiction with Fermat’s
Last Theorem.
The contradiction with Fermat’s Last Theorem follows from the counterexample qn + qn = pn.

Detailed solution:
Fix any integer n > 2.

Statement S: 2
1
n is irrational.

Statement T : There exist positive integers p, q such that qn + qn = pn.
Proof by contradiction:
We show that if S is false, then T is true:

S is false.
·

=⇒ It is not true that 2
1
n is irrational.

·
=⇒ 2

1
n is rational.

·
=⇒ There exist positive integers p and q such that 2

1
n = p

q
.

·
=⇒ There exist positive integers p and q such that 2 = pn

qn
.

·
=⇒ There exist positive integers p and q such that qn + qn = pn.

·
=⇒ T is true.

The statement T is false, since it is a counterexample to Fermat’s Last Theorem.

3.7 New Proof Patterns

a) The proof pattern described corresponds to the following statement about formulas:

(¬A→ (B1 ∨B2)) ∧ (¬B1 ∨ ¬B2) |= A.

We show that the proof pattern is not sound by showing that the statement is false.
Consider a truth assignment for which A is false, B1 is true, and B2 is false. Comput-
ing the function table of (¬A→ (B1 ∨ B2)) ∧ (¬B1 ∨ ¬B2) shows that the formula is
true under this truth assignment. Since A is false, the logical consequence does not
hold.

b) The proof pattern described corresponds to the following statement about formulas:

((A ∧ ¬B)→ C) ∧ ¬C |= A→ B.

We show that the proof pattern is sound by showing that the statement is true. To do
so, we compute the function tables of the formulas involved.

A B C ((A ∧ ¬B)→ C) ∧ ¬C A→ B

0 0 0 1 1
0 0 1 0 1
0 1 0 1 1
0 1 1 0 1
1 0 0 0 0
1 0 1 0 0
1 1 0 1 1
1 1 1 0 1



The table shows that if under a certain truth assignment of the propositional symbols
A, B, and C the formula ((A ∧ ¬B) → C) ∧ ¬C is true, then the formula A → B is
also true. Therefore, the logical consequence holds, and the proof pattern is sound.

3.8 Proof by Contradiction

We define the statement S as

S : (n |m and n | (m+ 1)) =⇒ n = 1

and the statement T as
T : n = 1 and n ̸= 1.

It is obvious that T is false for any natural number n.

Assume S is false.
·

=⇒ It is not true that ((n |m and n | (m+ 1)) =⇒ n = 1).
[Follows by definition of S.]
·

=⇒ It must hold that n |m and n | (m+ 1) and n ̸= 1.
[Follows since ¬(A→ B) ≡ ¬(¬A ∨B) ≡ A ∧ ¬B.]
·

=⇒ There must exist integers k and ℓ such that k · n = m and ℓ · n = (m+ 1) and n ̸= 1.
[Follows by definition of divisibility.]
·

=⇒ There must exist integers k and ℓ such that (ℓ− k) · n = 1 and n ̸= 1.
[Follows since (ℓ− k) · n = ℓ · n− k · n = m+ 1−m = 1.]
·

=⇒ It must hold n = 1 and n ̸= 1.
[Follows from ℓ− k ∈ N and 3.2 iii).]
·

=⇒ T is true.
[Follows from definition of T .]

Hence, we arrived at a contradiction and can conclude that S must be true.
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