Diskrete Mathematik Solution 13

13.1 Warm-Up

- a) F and G are not equivalent. As a counterexample, consider the following interpretation: $U^{\mathcal{A}} = \{0,1\}$, $P^{\mathcal{A}}(x) = 1 \iff x = 1, Q^{\mathcal{A}}(x) = 1 \iff x = 1, x^{\mathcal{A}} = 1, y^{\mathcal{A}} = 0$. Then we have $\mathcal{A}(P(x) \land \neg Q(y)) = 1$ but $\mathcal{A}(\neg Q(x) \land P(y)) = 0$.
- **b)** A possible choice is $H = P(x,y) \vee \neg P(x,y)$. Observe that both $\forall x H$ and $\forall y H$ are tautologies, and thus equivalent.
- c) A calculus K is complete if for every set of formulas M and every formula F, if F is a logical consequence of M then F can be derived from M, i.e., $M \models F \Longrightarrow M \vdash_K F$ (see Definition 6.22).

13.2 Prenex Normal Form

i) An equivalent formula in the prenex normal form is

$$\exists y \ (\neg P(y) \lor Q(x)).$$

To find this formula, we proceed as follows:

- 1. Identify the free variables: $(\forall x \ P(x)) \rightarrow Q(\underline{x})$.
- 2. Transform the formula into the rectified form by renaming the bound variables: $(\forall y \ P(y)) \rightarrow Q(x)$.
- 3. Apply Lemma 6.8:

$$(\forall y \ P(y)) \to Q(x) \equiv \neg(\forall y \ P(y)) \lor Q(x)$$

$$\equiv (\exists y \ \neg P(y)) \lor Q(x)$$

$$\equiv \exists y \ (\neg P(y) \lor Q(x))$$
(Lem. 6.8, 1))
$$(\Box Q(x)) = (\Box Q(x))$$
(Lem. 6.8, 10)

ii) An equivalent formula in the prenex normal form is

$$\forall z \exists y \exists t \exists u \forall v \ ((P(x, g(y), z) \lor \neg Q(t)) \land R(f(v, u), u))$$

To find this formula, we proceed as follows:

1. Identify the free variables:

$$\forall z \exists y \, (P(\underline{x}, g(y), z) \vee \neg \forall x \, Q(x)) \wedge \neg \forall z \exists x \, \neg R(f(x, z), z).$$

2. Transform the formula into the rectified form by renaming the bound variables:

$$\forall z \exists y \, (P(x, g(y), z) \vee \neg \forall t \, Q(t)) \wedge \neg \forall u \exists v \, \neg R(f(v, u), u).$$

3. Apply Lemma 6.8.

$$\forall z \exists y \left(P(x, g(y), z) \vee \neg \forall t \ Q(t) \right) \wedge \neg \forall u \exists v \ \neg R(f(v, u), u)$$

$$\equiv \forall z \exists y \ \left(P(x, g(y), z) \vee \exists t \ \neg Q(t) \right) \wedge \exists u \forall v \ R(f(v, u), u)$$

$$\equiv \forall z \exists y \exists t \exists u \forall v \ \left(\left(P(x, g(y), z) \vee \neg Q(t) \right) \wedge R(f(v, u), u) \right)$$
(Lem. 6.8, 7) to 10))

13.3 The Barber of Zurich

By Theorem 6.13,

$$F = \neg \exists x \forall y \ (P(y, x) \leftrightarrow \neg P(y, y))$$

is a tautology, that is, each interpretation \mathcal{A} suitable for F is a model for F. Consider the following interpretation \mathcal{A} : the universe $U^{\mathcal{A}}$ is the set of all people in Zürich and $P^{\mathcal{A}}(x,y)=1$ if and only if the person y shaves the person x. In this interpretation, the formula F denotes the statement "There does not exist a person x (the barber) in Zürich, such that for every person y in Zürich, x shaves y if and only if y does not shave himself".

13.4 At Most 18 Degrees

a) The statement can be described as follows:

$$F = \exists x (P(x) \rightarrow \forall y P(y))$$

b)
$$F \equiv \exists x \left(\neg P(x) \lor \forall y P(y) \right) \qquad (\text{def.} \rightarrow)$$
$$\equiv \left(\exists x \neg P(x) \right) \lor \left(\forall y P(y) \right) \qquad (\text{Lem. 6.8 10})$$
$$\equiv \neg \left(\forall x P(x) \right) \lor \left(\forall x P(x) \right) \qquad (\text{Lem. 6.8 1})$$
$$\equiv \neg \left(\forall x P(x) \right) \lor \left(\forall x P(x) \right) \qquad (\text{Lem. 6.10})$$
$$\equiv \top \qquad (\text{Lem. 6.1 11})$$

c) Let *U* be the set of all people in a pub, and let *P* be the predicate, which is true if a given person drinks. *F* can now be interpreted as follows:

"There is a person in the pub, such that if this person drinks, then everyone drinks."

Let U be the set of all professors at ETH, and let P be the predicate, which is true if a professor understands his or her field. F can be interpreted as follows:

"There is a professor at ETH, such that if he or she understands their field, then all professors understand their fields."

13.5 Formulas and Statements

- a) This expression is a formula.
- **b)** This is a statement about the formulas $\forall x \ P(x)$ and P(x).

The statement is true. To prove this, take any interpretation \mathcal{A} suitable for both $\forall x \ P(x)$ and P(x) (that is, \mathcal{A} defines P and the free variable x), that is a model for $\forall x \ P(x)$. Since $\mathcal{A}(\forall x \ P(x)) = 1$, it follows that $\mathcal{A}_{[x \to u]}(P(x)) = 1$ for all $u \in U^{\mathcal{A}}$. Hence, no matter which $u \in U^{\mathcal{A}}$ is assigned to the free occurrence of x by \mathcal{A} , we have $\mathcal{A}(P(x)) = 1$. Therefore, \mathcal{A} is also a model for P(x).

- c) This expression is not syntactically correct, since \equiv can only be used between formulas and $P(x) \models P(x)$ is a statement, not a formula.
- **d)** This is a statement about formulas.

The statement is false. As a counterexample, consider the following interpretation: $U^{\mathcal{A}} = \{0,1\}, \ P^{\mathcal{A}}(x) = 1 \iff x = 1, x^{\mathcal{A}} = 1, \ f^{\mathcal{A}}(x) \equiv 1, \ a^{\mathcal{A}} = 0.$ Then we have $\mathcal{A}(P(x)) = 1$ and $\mathcal{A}(P(f(a))) = 1$, but $\mathcal{A}(P(a)) = 0$.

13.6 Calculi

a) The following rules are correct: R_1, R_2, R_4 and R_6 .

To show this, for each rule R we consider the statement $M \models H$ for a set M and a formula H. If this statement is true for any M and H such that $M \vdash_R H$, then the rule is correct. We show $M \models H$ by drawing a function table and checking that the truth value of H is 1 whenever the truth values of all formulas in M are 1. A rule is incorrect if the statement $M \models H$ is false. We show this by giving a counterexample (the counterexamples are the rows in the corresponding function tables, printed in bold).

	F	G	$\mid F \mid$	$F \vee G$		F	$\mid G \mid$	$F \wedge G$	F		F	$\mid G \mid$	$\neg (F \land G)$	$\neg F \land \neg G$	
	0	0	0	0		0	0	0	0		0	0	1	1	
R_1 :	0	1	0	1	R_2 :	0	1	0	0	R_3 :	0	1	1	0	
	1	0	1	1		1	0	0	1		1	0	1	0	
	1	1	1	1		1	1	1	1		1	1	1 1 1 0	0	
				'				,						•	
	$F \mid G \mid F \mid F \to G \mid G$ $F \mid$							$\mid G \mid \mid F \to G \mid \neg F \to \neg G$				$F \mid e$	$F \mid G \parallel F \wedge G$		

	F	$\mid G \mid$	F	$F \to G$	l					$ \neg F \rightarrow \neg G$		F	$G \mid$	$F \wedge G$
	0	0	0	1	0		0	0	1	1		0	0	0
R_4 :	0	1	0	1	1	R_5 :	0	1	1	0	R_6 :	0	1	0
	1	0	1	0	0		1	0	0	1		1	0	0
	1	1	1	1	1		1	1	1	1		1	1	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

b) We have $K = \{R_1, R_2, R_4, R_6\}$. The derivation is the following:

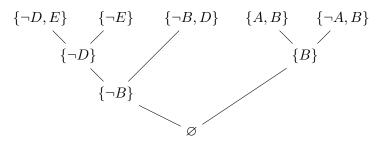
$$\begin{split} \{B \wedge A\} \vdash_{R_2} B \\ \{B\} \vdash_{R_1} B \vee C \\ \{B \vee C, (B \vee C) \rightarrow D\} \vdash_{R_4} D \\ \{A \wedge B\} \vdash_{R_2} A \\ \{D, A\} \vdash_{R_6} D \wedge A \\ \{D \wedge A, (D \wedge A) \rightarrow C\} \vdash_{R_4} C \\ \{A \wedge B, C\} \vdash_{R_6} (A \wedge B) \wedge C \\ \{(A \wedge B) \wedge C, D\} \vdash_{R_6} ((A \wedge B) \wedge C) \wedge D \end{split}$$

- c) The calculus $K' = \{R_2, R_4\}$ is not complete. As a counterexample, consider the set $M_0 = \{A \wedge B\}$ and the formula $H = B \wedge A$. We have $A \wedge B \models B \wedge A$. However, H cannot be derived from M_0 . Indeed, to M_0 one can only apply R_2 with F = A and G = B, obtaining the set $M_1 = \{A \wedge B, A\}$. But no new formulas can be derived from M_1 .
- **d)** For example, the following calculus $K'' = \{R\}$ with $\emptyset \vdash_R F$ is complete but not sound.

In the calculus K'', one can derive exactly *all* formulas. Hence, it is clearly complete. It is also clearly not sound, since for example, the formula $A \wedge B$ can be derived and it is not a tautology.

13.7 Resolution

a) i) The clauses are: $\{A, B\}, \{\neg E\}, \{\neg B, D\}, \{\neg D, E\}, \{\neg A, B\}$

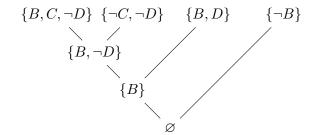


Hence, the formula is not satisfiable.

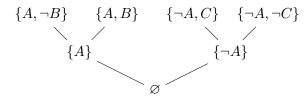
ii) The formula $G = (\neg B \land \neg C \land D) \lor (\neg B \land \neg D) \lor (C \land D) \lor B$ is a tautology if and only if

$$\neg G \equiv (B \lor C \lor \neg D) \land (B \lor D) \land (\neg C \lor \neg D) \land (\neg B)$$

is not satisfiable. We show this, using the resolution calculus:



iii) Let $\mathcal{K}(M) = \{\{\neg A, C\}, \{A, \neg B\}, \{A, B\}\}\$ be the set of clauses, corresponding to the set M. The set of clauses corresponding to $\neg H$ is $\mathcal{K}(\neg H) = \{\neg A, \neg C\}$ We show that $\mathcal{K}(M) \cup \mathcal{K}(\neg H)$ is unsatisfiable.



- b) There is only a finite number of atomic formulas in \mathcal{K} . Let k denote their number. Since in a clause an atomic formula can either: appear plain, appear negated, appear in both forms or not appear at all, the number of possible clauses that can be derived from \mathcal{K} is 4^k . Now for all $i \geq 0$, we have $\mathcal{K}_i \subseteq \mathcal{K}_{i+1}$. It follows that $|\mathcal{K}_i| \leq |\mathcal{K}_{i+1}|$, which, together with the fact that $|\mathcal{K}_i| \leq 4^k$, implies that for some $n \geq 0$, we have $|\mathcal{K}_n| = |\mathcal{K}_{n+1}| = \dots$ It follows that no new clauses can be added, that is, $\mathcal{K}_n = \mathcal{K}_{n+1} = \dots$
- c) For $i \in \mathbb{N}$, let

$$\mathcal{K}_i = \mathcal{K} \cup \bigcup_{j=1}^i \left\{ \left\{ A_0, \neg A_{j+1} \right\} \right\}.$$

Graphically, the constructed sequence of derivations looks as follows:

$$\{A_0, \neg A_1\}$$
 $\{A_1, \neg A_2\}$ $\{A_2, \neg A_3\}$ $\{A_3, \neg A_4\}$...
$$\{A_0, \neg A_2\}$$

$$\{A_0, \neg A_3\}$$

$$\{A_0, \neg A_4\}$$
...

More formally, we clearly have $\mathcal{K}_0 = \mathcal{K}$ and $\mathcal{K}_i \neq \mathcal{K}_{i-1}$ for all i > 0. What is left to show is that for all i > 0, there exist $K', K'' \in \mathcal{K}_{i-1}$ and K, such that $\{K', K''\} \vdash_{\mathsf{res}} K$ and $\mathcal{K}_i = \mathcal{K}_{i-1} \cup \{K\}$ (where K is the new clause, $K \notin \mathcal{K}_{i-1}$). Indeed, for any i > 0, we can take $K' = \{A_0, \neg A_i\} \in \mathcal{K}_{i-1}$ and $K'' = \{A_i, \neg A_{i+1}\} \in \mathcal{K} \subseteq \mathcal{K}_{i-1}$. Then we have $\{K', K''\} \vdash_{\mathsf{res}} \{A_0, \neg A_{i+1}\}$ (so $K = \{A_0, \neg A_{i+1}\}$) and

$$\mathcal{K}_{i} = \mathcal{K} \cup \bigcup_{j=1}^{i} \left\{ \{A_{0}, \neg A_{j+1}\} \right\}$$

$$= \mathcal{K} \cup \bigcup_{j=1}^{i-1} \left\{ \{A_{0}, \neg A_{j+1}\} \right\} \cup \left\{ \{A_{0}, \neg A_{i+1}\} \right\}$$

$$= \mathcal{K}_{i-1} \cup \{K\}.$$