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Error-Correcting Codes

Let c1,c2 € C with ¢; # ¢ be arbitrary. Since C forms a group, we know that ¢ =
c1 4 (—c2) € C. We have

d(c1,¢2) = hw(er + (—c2)) = hw(c) > 2t + 1.

In the first step, we have used that two codewords differ at a position if and only if
the difference of their values at this position is non-zero. In the last step, we have
used the assumption from above, together with the fact that ¢; # ¢z implies ¢ # 0".
Thus, we have dnin(C) > 2t + 1, which implies by Theorem 5.41 that C is t-error
correcting.

Let ¢ € C be arbitrary. Moreover, let cmin € C \ {0"} be such that hw(cmin) = 2t + 1.
Since C forms a group, we have ¢ + c¢min € C. Observe that

d(c,c+ cmin) = hw(cmin) = 2t + 1.

Thus, ¢ and ¢ + cmin differ on exactly 2¢ + 1 = (¢ + 1) + t positions. We can therefore
change the first ¢ 4+ 1 of these positions of c to the ones of ¢ + cmin to obtain a word
w with d(c,w) =t + 1 and d(c¢ + ¢min, w) = t. This word w cannot be error-corrected.
Since ¢ € C was arbitrary, there exists no codeword such that up to ¢ 4 1 arbitrary
errors can be corrected.

Proof Systems (x *)

We prove the claim constructively. Let S and P be non-empty setsand let ¢ : SxP —
{0, 1} be an arbitrary function. Consider the function 7 : S — {0, 1} defined by

r(s)=1 &

there exists p € P such that ¢(s,p) = 1.

The proof system II = (S,P,7,¢) is sound: For any s € S and any p € P with
¢(s,p) = 1, the definition of 7 implies that 7(s) = 1. Moreover, II is complete: For
any s € S with 7(s) = 1, the definition of 7 implies that there exists p € P such that
¢(s,p) = 1.

It is left to show that 7 is unique. Consider any function 7/ : S — {0, 1} such that
7 # 7'. This is implies that 7(s) # 7/(s) for some s € S. Case distinction:



e 7(s) =0and 7'(s) = 1. By definition of 7, 7(s) = 0 implies there exists no p € P
such that ¢(s,p) = 1. But since 7/(s) = 1, the proof system (S, P, 7', ¢) cannot
be complete.

e 7(s) = 1 and 7/(s) = 0. By definition of 7, 7(s) = 1 implies there exists p € P
such that ¢(s,p) = 1. But since 7/(s) = 0, the proof system (S, P, 7', ¢) cannot
be sound.

b)

(i) We prove the claim indirectly. Assume that neither II; nor Il is sound. Then
there exist s; € S and p; € P; such that 71(s1) = 0 and ¢1(s1,p1) = 1, and there
exist so € Sz and pa € P, such that 72(s2) = 0 and ¢2(s2, p2) = 1. Thus, we have
Tg(Sl, 52) =0 but ¢3((81, .5‘2)7 (pl,pz)) =1. Hence, Hg is not sound.

(ii) We disprove the claim by giving a counterexample. Let §; = So = {0} and
Py = P2 = {0}. We define 71(0) = 0, ¢1(0,0) = 0, 72(0) = 1, and ¢2(0,0) = 0.
Clearly IIy = (S1,P1, 71, ¢1) is complete. However, 73(0,0) = 1 since 72(0) = 1,
but ¢3((0, 0), (pl,pg)) = 0 for all (pl,pg) € PLx Py = {(0, 0)} Thus, 113 is not
complete.

11.3 Diffie-Hellman Proof System

A proof of a statement (y4,yp,kap) will be the discrete logarithm x4 of y4. Formally,
P =Zn and ¢((ya,yp, kap),z4) = 1if and only if "4 = y4 and y3* = kap.
Completeness: Assume T((yA,yB, kAB)) = 1. There exist unique z4,xp € Z, (the secret
keys chosen by Alice and Bob) such that g"4 = y4 and ¢g*# = yp. Since the statement is
true, we alsohave kap = g“4% = y;*. Hence, for this x4 we have ¢((ya, yp, kap), za) = 1.

Soundness: Assume ¢((y4,yp, kap),2’y) = 1. Let zp € Z, be (unique) such that g*# =
yp. The verification ¢ guarantees that kap = yf_-),A — ¢%a%5 and ¢4 = y, and zy €
Z,. Hence, k4p is the secret key resulting from the Diffie-Hellman protocol where Alice
chooses 2/, and Bob chooses zp.

11.4 Combining Proof Systems
a) Let P’ ={1,2,3} x {1,2,3} x P x P and let

&' ((s1,52,83), (i,4,p,p))) =1 <= i # jand ¢(s;,p) = 1 and ¢(s;,p') = 1.

To prove completeness, suppose that 7/ (s1, s2, s3) = 1. This means that at least two
si, s; out of s1, s, s3 are true. By completeness of ¥ there exist p and p’ in P such that
é(si,p) = ¢(sj,p') = 1. This means that, with the given definition of ¢/, the 4-tuple
(i,7,p,p") is a valid proof for (s1, s2, s3) in .
To prove soundness, suppose that for some (s1, sg, s3) € S® and some (i, j, p,p’) € P’
we have

¢,((51, 52, 53)7 (i,j,p, p,)) =1
Then, by soundness of 3, since ¢(s;,p) = 1 and ¢(s;,p’) = 1 we get that s; and s; are
true in X, which means that, since ¢ # j, at least two out of s1, s9, s3 are true in 3, and
by definition of 7’ the statement (s1, s2, s3) is true in X',



b) If there are no true statements in ¥, then the solution is trivial: simply define a proof
set P* with a single element, and the verification function ¢* evaluates to true for each
statement in S and the only proof in P*. Therefore, we can assume that S contains at
least one true statement. Let P* = & x P x P and let

gb*(s, (s',p’,;ﬁ)) =1 < ¢(s,p) =1and and 5((5’,3)@) =1.

To prove completeness of ¥*, suppose that 7*(s) = 1 which means 7(s) = 0. By
assumption, there exists an element s’ € S with 7(s) = 1. By completeness of ¥ we
can find a proof p’ € P such that ¢(s',p’) = 1. Furthermore, since 7(s) = 0, this
means that 7(s’, s) = 1, because only s’ is true in . By completeness of ¥ we find a
proof p with ¢((s',s),p) = 1. Therefore (s, p/,p) is a valid proof of s in ¥* with the
above definition of ¢*. To prove soundness of ¥*, suppose that ¢* (s, (s',p' ,ﬁ)) =1.
This means 1) ¢((s', s),p) = 1, which by soundness of 3 this means that exactly one
among s, s is true in ¥ and 2) ¢(s’,p’) = 1, which by soundness of ¥ implies that
7(s') = 1. These two facts together imply that s is false in 3. Therefore 7*(s) = 1.

11.5 Homer’s Birthday

a) Let A be the proposition “Abe comes to the party”, etc. The conditions given in the
exercise correspond to the following implications:

A —- B (1)
B — C (2)
¢ —» D (3)
(BAD) — =C 4)
D — (AVB) @)

We show that no one would arrive at the party and, hence, Homer eventually ends
up at Moe’s whether he organizes it or not. For each person, consider what happens
when he comes to the party:

i. Ais true. In this case, B is true by formula (I, C is true by formula (2), D is true
by formula (3) and —C is true by formula (4), which is a contradiction with C.
Hence, A is false.

ii. Bis true. In this case, again, C' is true by formula @), D is true by formula (3)
and —C'is true by formula @, which is a contradiction with C. Hence, B is false.

iii. C'is true. In this case, D is true by formula (3) and A Vv B is true by formula (5).
But both the assumption that A is true and the assumption that B is true lead
to a contradiction, as shown in cases i. and ii. Hence, A vV B also leads to a
contradiction and C' is false.

iv. D is true. In this case, A V B is true by formula (§). By the same argument as
above, D is false.

Overall, we can conclude that no one can come to the party. That is, all the formulas
are true only if A, B, C' and D are all false.



b) We now formally derive A, =B, ~C and —D, using given derivation rules:

11.6

a)

b)

{(5), (1)} Fry D—B (6)
{(6),2)} Fr D—=C (7)
{(6)} Fr, D= (BAD) (8)
{(8),@)} Fr D—-C (9)
{(1, )} Fr, =D (10)
{(3),(10)} Fgr, =C (11)
{(2), (A1)} Fgr, -B (12)
{(1),(12)} Fgr, A (13)

Models and Satisfiability

Consider the function table of F':

A|B|C| -AVB|-CA-A|B— (-CA-A)|AVC|F
0/0]0 1 1 1 0 |0
0|01 1 0 1 1|1
0110 1 1 1 o |o
011 1 0 0 1 |o
100 0 0 1 1 o
101 0 0 1 1 |0
110 1 0 0 1 |0
111 1 0 0 1 |0

The set of models for F' contains all truth assignments A, such that A(A) = A(B) =0
and A(C) = 1.

Consider now the function table of G:

A|B|C|~A=B)|Cc—=A|G
0]0]0 0 1 |1
001 0 0 |0
0|10 0 1|1
011 0 0 |0
11010 1 1 1
1101 1 1 1
11110 0 1 1
1111 0 1 1

The set of models for G contains all truth assignments A, such that A(A) = 1 and all
truth assignments 4, such that A(C) = 0.
The formulas are not equivalent, since the sets are not the same. G is not the conse-
quence of F, because the set of models for F' is not a subset of the set of models for
G. Similarly F is not a consequence of G.

The statement is false. A counterexampleis F' = AV -Aand G = BV -B. Of
course, F' and G have no common atomic formulas. However, by Lemma 6.1 11),
AV-A=T=BV-B.



(4]

11.7

a)

b)

The statement is false. A counterexample in propositional logic is /1 = A and F, =
AN-A. Fy and Fy; — F; are both satisfiable (F; — F is true for all interpretations A
that assign A(F1) = 0). However, F} is clearly not satisfiable.

Satisfiability

The set M is not satisfiable. To show this, assume that .4 is a model for M. Since
—-A € M, we have A(—A) = 1 and thus A(A) = 0. Moreover, we have B A C € M,
and therefore A(B A C) = 1, which implies that A(C) = 1.

Since A — —~C € M, we also have A(-A — —-C) = 1,s0 A(—AV -C) = A(AV
=C') = 1, which implies A(A) = 1 or A(C) = 0. This is a contradiction to A(A) =0
and A(C) = 1.

A model for N is, for example, the truth assignment A : {A;, Ao, ...} — {0,1} that

assigns A(A;) = 1 and A(A4;) = 0 for i > 1. (One could interpret the statement A; as
“iis less or equal to 1”7, for i € N.)
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