Diskrete Mathematik Solution 10

10.1 Warm-Up

- a) A field is a nontrivial commutative ring F in which every nonzero element is a unit, i.e., $F^* = F \setminus \{0\}$ (see Definition 5.26).
- **b)** A root of a polynomial $a(x) \in R[x]$ is an element $\alpha \in R$ such that $a(\alpha) = 0$. (see Definition 5.33).
- c) b(x) is not irreducible. Since b(1) = 0 and b(2) = 0, we obtain via Lemma 5.29 that b(x) = (x+2)(x+1).

10.2 Integral Domains and Fields

- **a)** For example, \mathbb{Z} , $\mathbb{Z}[x]$, $\mathbb{Q}[x]$.
- **b)** We have to prove that every $a \in D \setminus \{0\}$ is a unit. Let $a \in D \setminus \{0\}$ be arbitrary. We define the function $f_a : D \to D$ by $f_a(x) = a \cdot x$. We show that f_a is bijective:

injective: Assume that there exist $x, y \in D$ such that $f_a(x) = f_a(y)$ and $x \neq y$.

$$0 = f_a(y) - f_a(x) = a \cdot y - (a \cdot x) = a \cdot y + a \cdot (-x) = a \cdot (y - x),$$

where the third step follows from Lemma 5.17, and the last step uses the distributive law. Since by assumption $a \neq 0$ and $y - x \neq 0$, it follows that a is a zero-divisor, which is a contradiction with D being an integral domain.

surjective: If f_a was not surjective, we would have $y \notin Im(f_a)$ for some $y \in D$, which for finite D implies $|Im(f_a)| < |D|$. But since f_a is injective, the function $f'_a: D \to Im(f_a)$ defined by $f'_a(x) = f_a(x)$ is bijective, so $|Im(f_a)| = |D|$, which is a contradiction.

The inverse of a is $f_a^{-1}(1)$, because $a \cdot f_a^{-1}(1) = f_a(f_a^{-1}(1)) = 1$, hence, a is a unit.

10.3 Polynomials over a Field

a) In \mathbb{Z}_7 , the multiplicative inverse of 5 is 3, because $3 \cdot 5 \equiv_7 1$. Therefore, the first

coefficient of the result is 3. The rest of the computation proceeds analogously:

$$\begin{array}{c} (x^5 + 6x^2 + 5) : (5x^2 + 2x + 1) = 3x^3 + 3x^2 + x + 3 \\ \underline{-(x^5 + 6x^4 + 3x^3)} \\ \hline x^4 + 4x^3 + 6x^2 + + 5 \\ \underline{-(x^4 + 6x^3 + 3x^2)} \\ \hline 5x^3 + 3x^2 + + 5 \\ \underline{-(5x^3 + 2x^2 + x)} \\ \hline + x^2 + 6x + 5 \\ \underline{-(x^2 + 6x + 3)} \\ \hline Ramaindar & 2 \end{array}$$

b) The irreducible polynomials of degree 4 over GF(2) are $x^4 + x^3 + 1$, $x^4 + x + 1$ and $x^4 + x^3 + x^2 + x + 1$.

We show this by eliminating all *reducible* polynomials of degree four. A polynomial $p(x) = x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$ is reducible if it is divisible by a polynomial of degree one or two (if it is divisible by a polynomial of degree three, then it must also be divisible by one of degree one).

By Lemma 5.29, the polynomials p(x) divisible by a polynomial of degree one are exactly those for which p(0) = 0 or p(1) = 0. Hence, we have to eliminate the polynomials for which $a_0 = 0$ or $a_3 + a_2 + a_1 + a_0 = 1$. Remaining are the polynomials: $x^4 + x^3 + 1$, $x^4 + x + 1$, $x^4 + x^2 + 1$ and $x^4 + x^3 + x^2 + x + 1$.

Furthermore, over GF(2) there is only one irreducible polynomial of degree two, namely x^2+x+1 (the other polynomials: x^2, x^2+1 and x^2+x can be eliminated in the same way we did above). Hence, we have to also eliminate $(x^2+x+1)^2=x^4+x^2+1$.

10.4 The Ring $F[x]_{m(x)}$

a) The zero-divisors are those elements of $GF(3)[x]_{x^2+2x} \setminus \{0\}$ (that is, the non-zero polynomials of degree at most 1 with coefficients in \mathbb{Z}_3) which share a common factor (a polynomial of degree at least 1) with the modulus $x^2 + 2x$. The factors of $x^2 + 2x$ are x and x + 2, so the zero-divisors are the multiples of x and x + 2 of degree at most 1. These are ax and b(x + 2) for $a, b \in \mathbb{Z}_3$. Hence, the zero-divisors are:

$$x, 2x, x + 2, 2x + 1.$$

b) We have

$$GF(3)[x]_{x^2+2} = \{0, 1, 2, x, x+1, x+2, 2x, 2x+1, 2x+2\}.$$

By Lemma 5.36,

$$GF(3)[x]_{x^2+2}^* = \{a(x) \in GF(3)[x]_{x^2+2} \mid \gcd(a(x), x^2+2) = 1\}.$$

The task is to find all polynomials $a(x) \in GF(3)[x]$ of degree at most one, such that $gcd(a(x), x^2 + 2) = 1$. Note first that over GF(3), we have $x^2 + 2 = x^2 - 1 = 1$

(x+1)(x-1)=(x+1)(x+2). Hence, all polynomials b(x) of degree at most one, for which $\gcd(b(x),(x+1)(x+2))\neq 1$ are u(x+1) and v(x+2) for some $u,v\in \mathrm{GF}(3)$. These polynomials are: x+1,x+2,2x+2,2x+1 and 0.

The polynomials of degree at most one that are left are in $GF(3)[x]_{x^2+2}^*$. Therefore, $GF(3)[x]_{x^2+2}^* = \{1, 2, x, 2x\}$.

c) The inverse of $x \in \mathrm{GF}(3)[x]_{x^2+2}^*$ is a polynomial $p(x) \in \mathrm{GF}(3)[x]_{x^2+2}^*$, such that $x \cdot p(x) \equiv_{x^2+2} 1$ (where 1 is the constant polynomial). Since all the polynomials in $\mathrm{GF}(3)[x]_{x^2+2}^*$ have degree at most 1 (Definition 5.34), we have p(x) = ax + b for some $a,b \in \mathrm{GF}(3)$. Therefore, we only need to find a and b such that $x \cdot (ax+b) \equiv_{x^2+2} 1$. Note that

$$x \cdot (ax + b) \equiv_{x^2+2} ax^2 + bx \equiv_{x^2+2} -2a + bx \equiv_{x^2+2} a + bx.$$

It is now easy to see that $a + bx \equiv_{x^2+2} 1$ when b = 0 and a = 1. Hence, the inverse of the polynomial x is p(x) = x.

10.5 Extension Fields

a) By Lemma 5.35 we know that F is a ring with respect to addition and multiplication modulo $b(x) = x^3 + 2x^2 + 1$. In addition, we can compute

$$b(0) \equiv_3 1,$$

 $b(1) \equiv_3 4 \equiv_3 1,$ (1)
 $b(2) \equiv_3 17 \equiv_3 2.$

Therefore $b(x) = x^3 + 2x^2 + 1$ has no roots over \mathbb{Z}_3 . Because $\deg(b(x)) = 3$, by Corollary 5.30 it is irreducible over \mathbb{Z}_3 . Therefore, by Theorem 5.37, we conclude that F is a field.

b) The field F has $3^3 = 27$ elements (Lemma 5.34). Because F is a field, every non-zero element of F is a unit, which means that the group of units F^* has 27 - 1 = 26 elements. Therefore, if $x \in F^*$, we know by Corollary 5.9 that $\operatorname{ord}(x) \mid 26$, which means $\operatorname{ord}(x) \in \{1, 2, 13, 26\}$. Consider the polynomial $x \in \mathbb{Z}_3[x]_{b(x)}$. We have

$$x^{2} \not\equiv_{b(x)} 1$$

$$x^{13} \equiv_{b(x)} x(x^{3})^{4}$$

$$\equiv_{b(x)} x(x^{2} + 2)^{4}$$

$$\vdots$$

$$\equiv_{b(x)} 2$$

$$(2)$$

which means that $\operatorname{ord}(x) > 13$ and therefore $\operatorname{ord}(x) = 26$, which is equivalent to saying that x is a generator of F^* . Recall that we already knew by Theorem 5.40 (which is proven in this exercise sheet) that F^* is cyclic, but even if we did not know this, we have proven that for this specific field this holds.

c) Direct computation shows that the roots of a(y) are x and x^2 . Because the degree of a(y) is 2, by Theorem 5.31 these are all the roots.

10.6 Secret Sharing

- a) By Lemma 5.32, the polynomial a(x) is uniquely determined by the t values $s_i = a(\alpha_i)$, known to the t generals. Hence, the generals can use the Lagrange's interpolation formula to reconstruct a(x) and the secret code s.
- b) There are q possibilities for the secret s. Without loss of generality, consider the shares s_1, \ldots, s_{t-1} of the generals G_1, \ldots, G_{t-1} . By Lemma 5.32, for every $s \in GF(q)$, there exists a polynomial a(x) of degree at most t-1, such that $a(\alpha_1) = s_1, \ldots, a(\alpha_{t-1}) = s_{t-1}$ and a(0) = s, which could be the key.

Note. This polynomial is unique, so there is a bijection between the secrets s and the possible polynomials a(x). Since the polynomial was chosen at random, the secret s is random given the t-1 shares.

10.7 Structure of Multiplicative Groups of Finite Fields

- a) (\Rightarrow) Assume that $d = \gcd(a, b)$. By Definition 4.2 we have both $d \mid a$ and $d \mid b$. Furthermore, by Corollary 4.5 we can write d = ax + by for some $x, y \in \mathbb{Z}$. Dividing both sides of this last equation by d we obtain $\frac{a}{d}x + \frac{b}{d}y = 1$ which implies (recall Exercise 7.1) that $\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.
 - (\Leftarrow) Assume that both $d \mid a$ and $d \mid b$, and also $\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$. By Corollary 4.5 we can write $\frac{a}{d}x + \frac{b}{d}y = 1$. Multiplying by d on both sides we obtain ax + by = d. Suppose that for some $d' \in \mathbb{Z}$ we have both $d' \mid a$ and $d' \mid b$. Then $d'k_1 = a$ and $d'k_2 = b$ for some $k_1, k_2 \in \mathbb{Z}$. Therefore, we can write $d'k_1x + d'k_2y = d'(k_1x + k_2y) = d$ which shows $d' \mid d$. We conclude $d = \gcd(a, b)$ (Definition 4.2).

b) We have

$$\begin{split} A(d) &= \{k \in \{1, \dots, n\} \mid \gcd(k, n) = d\} \\ &= \left\{k \in \{1, \dots, n\} \mid (d \mid k) \land (d \mid n) \land \gcd\left(\frac{k}{d}, \frac{n}{d}\right) = 1\right\} \quad \text{(Subtask a))} \\ &= \left\{\ell d \in \{1, \dots, n\} \mid (d \mid n) \land \gcd\left(\ell, \frac{n}{d}\right) = 1\right\} \quad \left(\text{Set } \frac{k}{d} = \ell \in \mathbb{Z}\right) \end{split}$$

This means $|A(d)| = \left|\left\{\ell \in \left\{1, \dots, \frac{n}{d}\right\} \mid (d \mid n) \land \gcd\left(\ell, \frac{n}{d}\right) = 1\right\}\right| = \varphi\left(\frac{n}{d}\right)$ (Definitions 5.16 and 5.17).

- c) Observe that $\bigcup_{d|n} A(d) = \{1, \ldots, n\}$ and $A(d) \cap A(d') = \emptyset$ for all $d \neq d'$, that is, the sets A(d) as d ranges over the divisors of n form a partition of [1, n]. This means that $n = |\{1, \ldots, n\}| = \left|\bigcup_{d|n} A(d)\right| = \sum_{d|n} |A(d)| = \sum_{d|n} \varphi\left(\frac{n}{d}\right)$, where the last equality follows from subtask b) and the second to last from the fact that the sets are disjoint.
- **d)** This is simply because as d ranges over the divisors of n so does $\frac{n}{d}$. Let's prove this formally. Let D(n) denote the set of divisors of n. Consider the map $f:D(n)\to D(n)$ that maps $d\mapsto \frac{n}{d}$. First of all, notice that the map is well-defined, because if $d\mid n$, then dk=n for some $k\in\mathbb{Z}$, which means that $\frac{n}{d}\in\mathbb{Z}$. Therefore, we can write $n=\frac{n}{d}d$ which shows that $\frac{n}{d}\mid n$. Furthermore, this map is bijective, because for any divisor d of n we can write $d=\frac{n}{k}=f(k)$. This shows that f is surjective (and therefore

automatically injective). Therefore, we get

$$\sum_{d|n} \varphi\left(\frac{n}{d}\right) = \sum_{\{f(d) \mid d|n\}} \varphi\left(\frac{n}{f(d)}\right) = \sum_{d|n} \varphi\left(d\right).$$

By the previous subtask, we conclude that $\sum_{d|n} \varphi(d) = n$.

- e) The polynomial x^d-1 is a polynomial of degree d over the finite field F. By Theorem 5.31 it has at most d roots. Now, observe that if $k \in B(d)$ then $k^d=1$ so that k is a root of x^d-1 . Therefore $|B(d)| \leq d$. Suppose that $B(d) \neq \varnothing$. Let $k \in B(d)$ and consider the cyclic subgroup $\langle k \rangle$ of F^* generated by k. By Theorem 5.7 the number of elements of $\langle k \rangle$ that has order d is exactly $\varphi(d)$ (all the elements of the form k^i with $\gcd(d,i)=1$). This shows that if B(d) is not empty then $|B(d)| \geq \varphi(d)$. Now, suppose by contradiction that $|B(d)| > \varphi(d)$. This means that there is $g \in B(d)$ such that $g \notin \langle k \rangle$. But then the polynomial $g \in B(d)$ would have $g \in B(d)$ in addition to $g \in B(d)$ whenever $g \in B(d) \neq \emptyset$.
- f) Again, observe that the union $\bigcup_{d \in [1,n]} B(d) = \bigcup_{d \mid n} B(d) = F^*$, where the first equality follows from Corollary 5.9. Furthermore, if $d \neq d'$ then $B(d) \cap B(d') = \emptyset$ (the order of an element of F^* is uniquely defined). We have $\sum_{d \mid n} \varphi(d) = n = |F^*| = |\bigcup_{d \mid n} B(d)| = \sum_{d \mid n} |B(d)|$, where the first equality follows from subtask d), and the lasts from the facts that the sets B(d) for distinct d are disjoint. By subtask e) we know that the number of elements of B(d) is either $\varphi(d)$ or 0. Suppose that for some d' such that $d' \mid n$ we have |B(d')| = 0. Then clearly $n = \sum_{d \mid n, d \neq d} |B(d)| < \sum_{d \mid n} \varphi(d) = n$, a contradiction.
- **g)** Subtask f) in particular implies that $|B(n)| = \varphi(n) > 0$ which in turn implies $B(n) \neq \emptyset$, so that there is an element a of order n in F^* . This shows that F^* is cyclic.