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10.1 Warm-Up

a) A field is a nontrivial commutative ring F in which every nonzero element is a unit,
i.e, F* = F\ {0} (see Definition 5.26).

b) A root of a polynomial a(z) € Rz] is an element o € R such that a(a) = 0. (see
Definition 5.33).

¢) b(x) is not irreducible. Since b(1) = 0 and b(2) = 0, we obtain via Lemma 5.29 that
b(z) = (x 4+ 2)(x + 1).

10.2 Integral Domains and Fields
a) For example, Z, Z[z], Q[x].

b) We have to prove that every a € D \ {0} is a unit. Let a € D \ {0} be arbitrary. We
define the function f, : D — D by f,(z) = a - . We show that f,, is bijective:

injective: Assume that there exist z,y € D such that f,(z) = f,(y) and = # y.

0=faly) = fal@)=a-y—(a-z)=a-y+a (—z)=a-(y—z),

where the third step follows from Lemma 5.17, and the last step uses the dis-
tributive law. Since by assumption a # 0 and y — « # 0, it follows that a is a
zero-divisor, which is a contradiction with D being an integral domain.

surjective: If f, was not surjective, we would have y ¢ Im(f,) for some y € D,
which for finite D implies |Im(f,)| < |D|. But since f, is injective, the function
fl : D — Im(f,) defined by f/(z) = fq(x) is bijective, so |[Im(f,)| = |D|, which
is a contradiction.

The inverse of a is f;!(1), because a - f;1(1) = f.(f; (1)) = 1, hence, a is a unit.

10.3 Polynomials over a Field

a) In Z7, the multiplicative inverse of 5 is 3, because 3 - 5 =7 1. Therefore, the first



coefficient of the result is 3. The rest of the computation proceeds analogously:

(25 + 622 +5) : (52 +22r+1) = 323+ 322+ +3
—(25+ 62%+ 32° )
i+ 47+ 627+ 45
—( o+ 623+ 322 )

525+ 322+ +5
—(5x34 2224+ = )
+ 2%+62+5

—( 22 +62+3)
Remainder: 2

b) The irreducible polynomials of degree 4 over GF(2) are 2% + 2® + 1, 2 + x + 1 and
st + 1.
We show this by eliminating all reducible polynomials of degree four. A polynomial
p(z) = 2% + a32® + asz? + a1 + ap is reducible if it is divisible by a polynomial of
degree one or two (if it is divisible by a polynomial of degree three, then it must also
be divisible by one of degree one).

By Lemma 5.29, the polynomials p(x) divisible by a polynomial of degree one are
exactly those for which p(0) = 0 or p(1) = 0. Hence, we have to eliminate the poly-
nomials for which ag = 0 or a3 + a2 + a1 + ap = 1. Remaining are the polynomials:
A+t e+ Lt 2+ landat + 23+ a2+ o+ 1.

Furthermore, over GF(2) there is only one irreducible polynomial of degree two,
namely z?+z+1 (the other polynomials: 22, 22 +1 and 2%+ 2 can be eliminated in the
same way we did above). Hence, we have to also eliminate (22 +x+1)? = 2%+ 22 +1.

10.4 The Ring F[z],,(,)

a) The zero-divisors are those elements of GF(3)[x],2,2, \ {0} (that is, the non-zero
polynomials of degree at most 1 with coefficients in Z3) which share a common factor
(a polynomial of degree at least 1) with the modulus z? + 2z. The factors of 22 + 2z
are x and x + 2, so the zero-divisors are the multiples of x and x + 2 of degree at most
1. These are az and b(x + 2) for a, b € Z3. Hence, the zero-divisors are:

x,2x,x+ 2,2z + 1.

b) We have
GF(3)[z],202 =40,1,2, 2,2+ 1,2 + 2,22, 2z + 1, 22 + 2}.
By Lemma 5.36,
GF(3)[z];2,5 = {a(z) € GF(3)[a],242 | ged(a(z), a® +2) = 1}.

The task is to find all polynomials a(z) € GF(3)[z] of degree at most one, such that
ged(a(w), 22 +2) = 1. Note first that over GF(3), we have 22 +2 = 22 — 1 =



<)
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(x4 1)(x— 1) = (x+1)(z+2). Hence, all polynomials b(x) of degree at most one, for
which ged(b(x), (z + 1)(z + 2)) # 1 are u(x + 1) and v(x + 2) for some u,v € GF(3).
These polynomials are: x + 1,z + 2,2z + 2, 2z + 1 and 0.

The polynomials of degree at most one that are left are in GF(3)[z]?,, ,. Therefore,
GF3)[z]}2,, = {1,2,2,22}.

The inverse of x € GF(3)[z]},,, is a polynomial p(z) € GF(3)[z]}>,,, such that
x - p(x) =249 1 (Where 1 is the constant polynomial). Since all the polynomials in
GF(3)[z]},, , have degree at most 1 (Definition 5.34), we have p(z) = ax + b for some
a,b € GF(3). Therefore, we only need to find a and b such that = - (ax + b) =25 1.
Note that

z - (ax +b) =240 ar® + br =429 —2a + br =424 a + bz
It is now easy to see that a 4 bz =,2,5 1 when b = 0 and a = 1. Hence, the inverse of

the polynomial x is p(z) = z.

Extension Fields

By Lemma 5.35 we know that F is a ring with respect to addition and multiplication
modulo b(z) = 22 4 222 + 1. In addition, we can compute

b(O) =3 1,
b(l) =34 =31, (1)

Therefore b(z) = 2% + 222 + 1 has no roots over Zs. Because deg(b(z)) = 3, by
Corollary 5.30 it is irreducible over Zs. Therefore, by Theorem 5.37, we conclude that
Fis a field.

The field F has 3% = 27 elements (Lemma 5.34). Because F is a field, every non-
zero element of F' is a unit, which means that the group of units F* has 27 — 1 = 26
elements. Therefore, if z € F*, we know by Corollary 5.9 that ord(z) | 26, which
means ord(z) € {1,2,13,26}. Consider the polynomial = € Z3[x];(,). We have

2 Zp 1

$13 =) .%’(1‘3)4
=p(a) m(m2 + 2)4 )
Eb(x) 2

which means that ord(x) > 13 and therefore ord(x) = 26, which is equivalent to
saying that z is a generator of F'*. Recall that we already knew by Theorem 5.40
(which is proven in this exercise sheet) that F™* is cyclic, but even if we did not know
this, we have proven that for this specific field this holds.

Direct computation shows that the roots of a(y) are = and z2. Because the degree of
a(y) is 2, by Theorem 5.31 these are all the roots.
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Secret Sharing

By Lemma 5.32, the polynomial a(x) is uniquely determined by the ¢ values s; =
a(a;), known to the t generals. Hence, the generals can use the Lagrange’s interpola-
tion formula to reconstruct a(z) and the secret code s.

There are g possibilities for the secret s. Without loss of generality, consider the shares
s1,...,5t—1 of the generals Gy, ...,G;_1. By Lemma 5.32, for every s € GF(q), there
exists a polynomial a(x) of degree at most ¢t — 1, such that a(a;) = s1, ..., a(lw—1) =
st—1 and a(0) = s, which could be the key.

Note. This polynomial is unique, so there is a bijection between the secrets s and the possible polyno-

mials a(x). Since the polynomial was chosen at random, the secret s is random given the ¢ — 1 shares.

Structure of Multiplicative Groups of Finite Fields

(=) Assume that d = gcd(a,b). By Definition 4.2 we have both d | a and d | b.
Furthermore, by Corollary 4.5 we can write d = az + by for some z,y € Z. Dividing
both sides of this last equation by d we obtain Jz + gy = 1 which implies (recall
Exercise 7.1) that ged (%, %) = 1.

(<) Assume thatboth d | a and d | b, and also ged ( o d) = 1. By Corollary 4.5 we can
write 2z + %y = 1. Multiplying by d on both sides we obtain az + by = d. Suppose
that for some d’ € Z we have both d’ | a and d’' | b. Then d'k; = a and d’'ks = b for
some ki, ko € Z. Therefore, we can write d'k1z + d'koy = d'(kix + koy) = d which
shows d’ | d. We conclude d = ged(a, b) (Definition 4.2).

We have

A(d) = {k €{1,...,n} | ged(k,n) = d}

4]

d)

{k c{1,....n) ’ (d| k) A (d] n) A ged <Z d> 1} (Subtask a))
:{zde{r...,n}((d|n)Agcd(z,E):1} (Setszfez)
This means |A(d)| = [{¢ € {1,...,%} | (d|n) Aged (¢,2) =1}| = ¢ (%) (Definitions
5.16 and 5.17).

Observe that | J,,, A(d) = {1,...,n} and A(d) N A(d) = @ for all d # d', that is, the
sets A(d) as d ranges over the divisors of n form a partition of [1, n]. This means that

n=1/{1,...,n} = ’Udm ‘ = Y |[AW@)] = X4, (%), where the last equality
follows from subtask b) and the second to last from the fact that the sets are disjoint.

This is simply because as d ranges over the divisors of n so does . Let’s prove this
formally. Let D(n) denote the set of divisors of n. Consider the map f : D(n) — D(n)
that maps d +— %. First of all, notice that the map is well-defined, because if d | n,
then dk = n for some k € Z, which means that % € Z. Therefore, we can write n = %d
which shows that % | n. Furthermore, this map is bijective, because for any divisor

d of n we can wrlte d = % = f (k). This shows that f is surjective (and therefore



e)

f)

8)

automatically injective). Therefore, we get

Zs@(%) = ) ¢<le>> z%w(d)-

djn {f(d) | dn}
By the previous subtask, we conclude that 3, ¢ (d) = n.

The polynomial 2¢ — 1 is a polynomial of degree d over the finite field . By Theorem
5.31 it has at most d roots. Now, observe that if k& € B(d) then k% = 1 so that k is
a root of ¢ — 1. Therefore |B(d)| < d. Suppose that B(d) # @. Let k € B(d) and
consider the cyclic subgroup (k) of F'* generated by k. By Theorem 5.7 the number
of elements of (k) that has order d is exactly ¢(d) (all the elements of the form &’
with ged(d, i) = 1). This shows that if B(d) is not empty then |B(d)| > ¢(d). Now,
suppose by contradiction that | B(d)| > ¢(d). This means that there is y € B(d) such
that y ¢ (k). But then the polynomial z¢ + 1 would have d + 1 roots (namely all
elements of (k) in addition to y), a contradiction. This shows that |B(d)| = ¢(d)
whenever B(d) # @.

Again, observe that the union {J ey ,,) B(d) = Uy, B(d) = F*, where the first equal-
ity follows from Corollary 5.9. Furthermore, if d # d’ then B(d) N B(d') = & (the
order of an element of F™* is uniquely defined).

We have 3, ¢(d) = n = [F*| = [Uy, B(d)| = X4, |B(d)|, where the first equality
follows from subtask d), and the lasts from the facts that the sets B(d) for distinct d
are disjoint. By subtask e) we know that the number of elements of B(d) is either
©(d) or 0. Suppose that for some d’ such that d’ | n we have |B(d')| = 0. Then clearly
n =23 gnazd | B(d)] <> g, v(d) = n, a contradiction.

Subtask f) in particular implies that | B(n)| = ¢(n) > 0 which in turn implies B(n) #
@, so that there is an element a of order n in F'*. This shows that F™* is cyclic.
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